test_modeling_data2vec_vision.py 13.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Arthur's avatar
Arthur committed
15
"""Testing suite for the PyTorch Data2VecVision model."""
16
17
18
19

import unittest

from transformers import Data2VecVisionConfig
20
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
21
22
from transformers.utils import cached_property, is_torch_available, is_vision_available

Yih-Dar's avatar
Yih-Dar committed
23
24
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
25
from ...test_pipeline_mixin import PipelineTesterMixin
26
27
28
29
30
31
32
33
34
35
36


if is_torch_available():
    import torch
    from torch import nn

    from transformers import (
        Data2VecVisionForImageClassification,
        Data2VecVisionForSemanticSegmentation,
        Data2VecVisionModel,
    )
37
    from transformers.models.auto.modeling_auto import MODEL_MAPPING_NAMES
38
39
40
41
42


if is_vision_available():
    from PIL import Image

43
    from transformers import BeitImageProcessor
44
45
46
47
48
49
50
51
52
53
54
55
56
57


class Data2VecVisionModelTester:
    def __init__(
        self,
        parent,
        vocab_size=100,
        batch_size=13,
        image_size=30,
        patch_size=2,
        num_channels=3,
        is_training=True,
        use_labels=True,
        hidden_size=32,
58
        num_hidden_layers=2,
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
        num_attention_heads=4,
        intermediate_size=37,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        type_sequence_label_size=10,
        initializer_range=0.02,
        num_labels=3,
        scope=None,
        out_indices=[0, 1, 2, 3],
    ):
        self.parent = parent
        self.vocab_size = 100
        self.batch_size = batch_size
        self.image_size = image_size
        self.patch_size = patch_size
        self.num_channels = num_channels
        self.is_training = is_training
        self.use_labels = use_labels
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.type_sequence_label_size = type_sequence_label_size
        self.initializer_range = initializer_range
        self.scope = scope
        self.out_indices = out_indices
        self.num_labels = num_labels

NielsRogge's avatar
NielsRogge committed
91
92
93
94
        # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
        num_patches = (image_size // patch_size) ** 2
        self.seq_length = num_patches + 1

95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
    def prepare_config_and_inputs(self):
        pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])

        labels = None
        pixel_labels = None
        if self.use_labels:
            labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            pixel_labels = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels)

        config = self.get_config()

        return config, pixel_values, labels, pixel_labels

    def get_config(self):
        return Data2VecVisionConfig(
            vocab_size=self.vocab_size,
            image_size=self.image_size,
            patch_size=self.patch_size,
            num_channels=self.num_channels,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            is_decoder=False,
            initializer_range=self.initializer_range,
            out_indices=self.out_indices,
        )

    def create_and_check_model(self, config, pixel_values, labels, pixel_labels):
        model = Data2VecVisionModel(config=config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values)
        # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token)
NielsRogge's avatar
NielsRogge committed
132
        num_patches = (self.image_size // self.patch_size) ** 2
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, num_patches + 1, self.hidden_size))

    def create_and_check_for_image_classification(self, config, pixel_values, labels, pixel_labels):
        config.num_labels = self.type_sequence_label_size
        model = Data2VecVisionForImageClassification(config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values, labels=labels)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))

    def create_and_check_for_image_segmentation(self, config, pixel_values, labels, pixel_labels):
        config.num_labels = self.num_labels
        model = Data2VecVisionForSemanticSegmentation(config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values)
        self.parent.assertEqual(
            result.logits.shape, (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2)
        )
        result = model(pixel_values, labels=pixel_labels)
        self.parent.assertEqual(
            result.logits.shape, (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2)
        )

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        config, pixel_values, labels, pixel_labels = config_and_inputs
        inputs_dict = {"pixel_values": pixel_values}
        return config, inputs_dict


@require_torch
165
class Data2VecVisionModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
166
167
168
169
170
171
172
173
174
175
    """
    Here we also overwrite some of the tests of test_modeling_common.py, as Data2VecVision does not use input_ids, inputs_embeds,
    attention_mask and seq_length.
    """

    all_model_classes = (
        (Data2VecVisionModel, Data2VecVisionForImageClassification, Data2VecVisionForSemanticSegmentation)
        if is_torch_available()
        else ()
    )
176
177
    pipeline_model_mapping = (
        {
178
            "image-feature-extraction": Data2VecVisionModel,
179
180
181
182
183
184
            "image-classification": Data2VecVisionForImageClassification,
            "image-segmentation": Data2VecVisionForSemanticSegmentation,
        }
        if is_torch_available()
        else {}
    )
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202

    test_pruning = False
    test_resize_embeddings = False
    test_head_masking = False

    def setUp(self):
        self.model_tester = Data2VecVisionModelTester(self)
        self.config_tester = ConfigTester(
            self, config_class=Data2VecVisionConfig, has_text_modality=False, hidden_size=37
        )

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_inputs_embeds(self):
        # Data2VecVision does not use inputs_embeds
        pass

203
204
205
206
207
208
209
    @require_torch_multi_gpu
    @unittest.skip(
        reason="Data2VecVision has some layers using `add_module` which doesn't work well with `nn.DataParallel`"
    )
    def test_multi_gpu_data_parallel_forward(self):
        pass

210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
    def test_model_common_attributes(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
            x = model.get_output_embeddings()
            self.assertTrue(x is None or isinstance(x, nn.Linear))

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

    def test_for_image_segmentation(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_image_segmentation(*config_and_inputs)

    def test_training(self):
        if not self.model_tester.is_training:
            return

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.return_dict = True

        for model_class in self.all_model_classes:
235
            if model_class.__name__ in MODEL_MAPPING_NAMES.values():
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
                continue

            model = model_class(config)
            model.to(torch_device)
            model.train()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

    def test_training_gradient_checkpointing(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        if not self.model_tester.is_training:
            return

        config.use_cache = False
        config.return_dict = True

        for model_class in self.all_model_classes:
254
            if model_class.__name__ in MODEL_MAPPING_NAMES.values() or not model_class.supports_gradient_checkpointing:
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
                continue
            # TODO: remove the following 3 lines once we have a MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING
            # this can then be incorporated into _prepare_for_class in test_modeling_common.py
            elif model_class.__name__ == "Data2VecVisionForSemanticSegmentation":
                batch_size, num_channels, height, width = inputs_dict["pixel_values"].shape
                inputs_dict["labels"] = torch.zeros(
                    [self.model_tester.batch_size, height, width], device=torch_device
                ).long()
            model = model_class(config)
            model.gradient_checkpointing_enable()
            model.to(torch_device)
            model.train()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

    def test_initialization(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        configs_no_init = _config_zero_init(config)
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            for name, param in model.named_parameters():
                # we skip lambda parameters as these require special initial values
                # determined by config.layer_scale_init_value
                if "lambda" in name:
                    continue
                if param.requires_grad:
                    self.assertIn(
                        ((param.data.mean() * 1e9).round() / 1e9).item(),
                        [0.0, 1.0],
                        msg=f"Parameter {name} of model {model_class} seems not properly initialized",
                    )

289
290
291
292
    def check_pt_tf_outputs(self, tf_outputs, pt_outputs, model_class, tol=2e-4, name="outputs", attributes=None):
        # We override with a slightly higher tol value, as semseg models tend to diverge a bit more
        super().check_pt_tf_outputs(tf_outputs, pt_outputs, model_class, tol, name, attributes)

293
294
295
296
297
298
    def test_for_image_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_image_classification(*config_and_inputs)

    @slow
    def test_model_from_pretrained(self):
299
300
301
        model_name = "facebook/data2vec-vision-base-ft1k"
        model = Data2VecVisionModel.from_pretrained(model_name)
        self.assertIsNotNone(model)
302
303
304
305
306
307
308
309
310
311
312
313


# We will verify our results on an image of cute cats
def prepare_img():
    image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
    return image


@require_torch
@require_vision
class Data2VecVisionModelIntegrationTest(unittest.TestCase):
    @cached_property
314
    def default_image_processor(self):
315
        return (
316
            BeitImageProcessor.from_pretrained("facebook/data2vec-vision-base-ft1k") if is_vision_available() else None
317
318
319
320
321
322
323
324
        )

    @slow
    def test_inference_image_classification_head_imagenet_1k(self):
        model = Data2VecVisionForImageClassification.from_pretrained("facebook/data2vec-vision-base-ft1k").to(
            torch_device
        )

325
        image_processor = self.default_image_processor
326
        image = prepare_img()
327
        inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343

        # forward pass
        with torch.no_grad():
            outputs = model(**inputs)
        logits = outputs.logits

        # verify the logits
        expected_shape = torch.Size((1, 1000))
        self.assertEqual(logits.shape, expected_shape)

        expected_slice = torch.tensor([0.3277, -0.1395, 0.0911]).to(torch_device)

        self.assertTrue(torch.allclose(logits[0, :3], expected_slice, atol=1e-4))

        expected_top2 = [model.config.label2id[i] for i in ["remote control, remote", "tabby, tabby cat"]]
        self.assertEqual(logits[0].topk(2).indices.cpu().tolist(), expected_top2)