plot_csv_file.py 4.08 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import csv
from collections import defaultdict
from dataclasses import dataclass, field
from typing import Optional

import numpy as np

import matplotlib.pyplot as plt
from transformers import HfArgumentParser


@dataclass
class PlotArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
    """

    csv_file: str = field(metadata={"help": "The csv file to plot."},)
    plot_along_batch: bool = field(
        default=False,
        metadata={"help": "Whether to plot along batch size or sequence lengh. Defaults to sequence length."},
    )
    is_time: bool = field(
        default=False,
        metadata={"help": "Whether the csv file has time results or memory results. Defaults to memory results."},
    )
    is_train: bool = field(
        default=False,
        metadata={
            "help": "Whether the csv file has training results or inference results. Defaults to inference results."
        },
    )
    figure_png_file: Optional[str] = field(
        default=None, metadata={"help": "Filename under which the plot will be saved. If unused no plot is saved."},
    )


class Plot:
    def __init__(self, args):
        self.args = args
        self.result_dict = defaultdict(lambda: dict(bsz=[], seq_len=[], result={}))

        with open(self.args.csv_file, newline="") as csv_file:
            reader = csv.DictReader(csv_file)
            for row in reader:
                model_name = row["model"]
                self.result_dict[model_name]["bsz"].append(int(row["batch_size"]))
                self.result_dict[model_name]["seq_len"].append(int(row["sequence_length"]))
                self.result_dict[model_name]["result"][(int(row["batch_size"]), int(row["sequence_length"]))] = row[
                    "result"
                ]

    def plot(self):
        fig, ax = plt.subplots()
        title_str = "Time usage" if self.args.is_time else "Memory usage"
        title_str = title_str + " for training" if self.args.is_train else title_str + " for inference"

        for model_name in self.result_dict.keys():
            batch_sizes = sorted(list(set(self.result_dict[model_name]["bsz"])))
            sequence_lengths = sorted(list(set(self.result_dict[model_name]["seq_len"])))
            results = self.result_dict[model_name]["result"]

            (x_axis_array, inner_loop_array) = (
                (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes)
            )

            plt.xlim(min(x_axis_array), max(x_axis_array))

            for inner_loop_value in inner_loop_array:
                if self.args.plot_along_batch:
                    y_axis_array = np.asarray([results[(x, inner_loop_value)] for x in x_axis_array], dtype=np.int)
                else:
                    y_axis_array = np.asarray([results[(inner_loop_value, x)] for x in x_axis_array], dtype=np.float32)

                ax.set_xscale("log", basex=2)
                ax.set_yscale("log", basey=10)

                (x_axis_label, inner_loop_label) = (
                    ("batch_size", "sequence_length in #tokens")
                    if self.args.plot_along_batch
                    else ("sequence_length in #tokens", "batch_size")
                )

                x_axis_array = np.asarray(x_axis_array, np.int)
                plt.scatter(x_axis_array, y_axis_array, label=f"{model_name} - {inner_loop_label}: {inner_loop_value}")
                plt.plot(x_axis_array, y_axis_array, "--")

            title_str += f" {model_name} vs."

        title_str = title_str[:-4]
        y_axis_label = "Time in s" if self.args.is_time else "Memory in MB"

        # plot
        plt.title(title_str)
        plt.xlabel(x_axis_label)
        plt.ylabel(y_axis_label)
        plt.legend()

        if self.args.figure_png_file is not None:
            plt.savefig(self.args.figure_png_file)
        else:
            plt.show()


def main():
    parser = HfArgumentParser(PlotArguments)
    plot_args = parser.parse_args_into_dataclasses()[0]
    plot = Plot(args=plot_args)
    plot.plot()


if __name__ == "__main__":
    main()