"...composable_kernel_rocm.git" did not exist on "02958ba5bdd391f3c223a703c13001a82b5e414a"
test_modeling_vision_encoder_decoder.py 28.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
# coding=utf-8
# Copyright 2021 HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import tempfile
import unittest

from datasets import load_dataset

from transformers.file_utils import cached_property, is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_vision, slow, torch_device

from .test_modeling_bert import BertModelTester
from .test_modeling_common import floats_tensor, ids_tensor, random_attention_mask
from .test_modeling_deit import DeiTModelTester
from .test_modeling_trocr import TrOCRStandaloneDecoderModelTester
from .test_modeling_vit import ViTModelTester


if is_torch_available():
    import numpy as np
    import torch

    from transformers import (
37
        AutoTokenizer,
38
39
40
41
42
43
44
45
46
47
48
49
50
51
        BertLMHeadModel,
        DeiTModel,
        TrOCRForCausalLM,
        VisionEncoderDecoderConfig,
        VisionEncoderDecoderModel,
        ViTModel,
    )
    from transformers.modeling_outputs import BaseModelOutput
    from transformers.models.vit.modeling_vit import to_2tuple


if is_vision_available():
    from PIL import Image

52
    from transformers import TrOCRProcessor, ViTFeatureExtractor
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659


@require_torch
class EncoderDecoderMixin:
    def get_encoder_decoder_model(self, config, decoder_config):
        pass

    def prepare_config_and_inputs(self):
        pass

    def get_pretrained_model_and_inputs(self):
        pass

    def check_encoder_decoder_model_from_pretrained_configs(
        self,
        config,
        attention_mask,
        decoder_config,
        decoder_input_ids,
        decoder_attention_mask,
        pixel_values=None,
        **kwargs
    ):
        encoder_decoder_config = VisionEncoderDecoderConfig.from_encoder_decoder_configs(config, decoder_config)
        self.assertTrue(encoder_decoder_config.decoder.is_decoder)

        enc_dec_model = VisionEncoderDecoderModel(encoder_decoder_config)
        enc_dec_model.to(torch_device)
        enc_dec_model.eval()

        self.assertTrue(enc_dec_model.config.is_encoder_decoder)

        outputs_encoder_decoder = enc_dec_model(
            pixel_values=pixel_values,
            attention_mask=attention_mask,
            decoder_input_ids=decoder_input_ids,
            decoder_attention_mask=decoder_attention_mask,
        )

        self.assertEqual(
            outputs_encoder_decoder["logits"].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,))
        )

    def check_encoder_decoder_model(
        self,
        config,
        attention_mask,
        decoder_config,
        decoder_input_ids,
        decoder_attention_mask,
        pixel_values=None,
        **kwargs
    ):
        encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
        enc_dec_model = VisionEncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
        self.assertTrue(enc_dec_model.config.decoder.is_decoder)
        self.assertTrue(enc_dec_model.config.decoder.add_cross_attention)
        self.assertTrue(enc_dec_model.config.is_encoder_decoder)
        enc_dec_model.to(torch_device)
        outputs_encoder_decoder = enc_dec_model(
            pixel_values=pixel_values,
            attention_mask=attention_mask,
            decoder_input_ids=decoder_input_ids,
            decoder_attention_mask=decoder_attention_mask,
            output_hidden_states=True,
        )
        self.assertEqual(
            outputs_encoder_decoder["logits"].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,))
        )
        encoder_outputs = BaseModelOutput(last_hidden_state=outputs_encoder_decoder.encoder_hidden_states[-1])
        outputs_encoder_decoder = enc_dec_model(
            encoder_outputs=encoder_outputs,
            attention_mask=attention_mask,
            decoder_input_ids=decoder_input_ids,
            decoder_attention_mask=decoder_attention_mask,
        )

        self.assertEqual(
            outputs_encoder_decoder["logits"].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,))
        )

    def check_encoder_decoder_model_from_pretrained(
        self,
        config,
        attention_mask,
        decoder_config,
        decoder_input_ids,
        decoder_attention_mask,
        return_dict,
        pixel_values=None,
        **kwargs
    ):
        encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
        kwargs = {"encoder_model": encoder_model, "decoder_model": decoder_model, "return_dict": return_dict}
        enc_dec_model = VisionEncoderDecoderModel.from_encoder_decoder_pretrained(**kwargs)
        enc_dec_model.to(torch_device)
        outputs_encoder_decoder = enc_dec_model(
            pixel_values=pixel_values,
            attention_mask=attention_mask,
            decoder_input_ids=decoder_input_ids,
            decoder_attention_mask=decoder_attention_mask,
            output_hidden_states=True,
            return_dict=True,
        )

        self.assertEqual(
            outputs_encoder_decoder["logits"].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,))
        )

    def check_save_and_load(
        self,
        config,
        attention_mask,
        decoder_config,
        decoder_input_ids,
        decoder_attention_mask,
        pixel_values=None,
        **kwargs
    ):
        encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
        enc_dec_model = VisionEncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
        enc_dec_model.to(torch_device)
        enc_dec_model.eval()
        with torch.no_grad():
            outputs = enc_dec_model(
                pixel_values=pixel_values,
                attention_mask=attention_mask,
                decoder_input_ids=decoder_input_ids,
                decoder_attention_mask=decoder_attention_mask,
            )
            out_2 = outputs[0].cpu().numpy()
            out_2[np.isnan(out_2)] = 0

            with tempfile.TemporaryDirectory() as tmpdirname:
                enc_dec_model.save_pretrained(tmpdirname)
                enc_dec_model = VisionEncoderDecoderModel.from_pretrained(tmpdirname)
                enc_dec_model.to(torch_device)

                after_outputs = enc_dec_model(
                    pixel_values=pixel_values,
                    attention_mask=attention_mask,
                    decoder_input_ids=decoder_input_ids,
                    decoder_attention_mask=decoder_attention_mask,
                )
                out_1 = after_outputs[0].cpu().numpy()
                out_1[np.isnan(out_1)] = 0
                max_diff = np.amax(np.abs(out_1 - out_2))
                self.assertLessEqual(max_diff, 1e-5)

    def check_save_and_load_encoder_decoder_model(
        self,
        config,
        attention_mask,
        decoder_config,
        decoder_input_ids,
        decoder_attention_mask,
        pixel_values=None,
        **kwargs
    ):
        encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
        enc_dec_model = VisionEncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
        enc_dec_model.to(torch_device)
        enc_dec_model.eval()
        with torch.no_grad():
            outputs = enc_dec_model(
                pixel_values=pixel_values,
                attention_mask=attention_mask,
                decoder_input_ids=decoder_input_ids,
                decoder_attention_mask=decoder_attention_mask,
            )
            out_2 = outputs[0].cpu().numpy()
            out_2[np.isnan(out_2)] = 0

            with tempfile.TemporaryDirectory() as encoder_tmp_dirname, tempfile.TemporaryDirectory() as decoder_tmp_dirname:
                enc_dec_model.encoder.save_pretrained(encoder_tmp_dirname)
                enc_dec_model.decoder.save_pretrained(decoder_tmp_dirname)
                VisionEncoderDecoderModel.from_encoder_decoder_pretrained(
                    encoder_pretrained_model_name_or_path=encoder_tmp_dirname,
                    decoder_pretrained_model_name_or_path=decoder_tmp_dirname,
                )

                after_outputs = enc_dec_model(
                    pixel_values=pixel_values,
                    attention_mask=attention_mask,
                    decoder_input_ids=decoder_input_ids,
                    decoder_attention_mask=decoder_attention_mask,
                )
                out_1 = after_outputs[0].cpu().numpy()
                out_1[np.isnan(out_1)] = 0
                max_diff = np.amax(np.abs(out_1 - out_2))
                self.assertLessEqual(max_diff, 1e-5)

    def check_encoder_decoder_model_output_attentions(
        self,
        config,
        attention_mask,
        decoder_config,
        decoder_input_ids,
        decoder_attention_mask,
        labels=None,
        pixel_values=None,
        **kwargs
    ):
        # make the decoder inputs a different shape from the encoder inputs to harden the test
        decoder_input_ids = decoder_input_ids[:, :-1]
        decoder_attention_mask = decoder_attention_mask[:, :-1]
        encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
        enc_dec_model = VisionEncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
        enc_dec_model.to(torch_device)
        outputs_encoder_decoder = enc_dec_model(
            pixel_values=pixel_values,
            attention_mask=attention_mask,
            decoder_input_ids=decoder_input_ids,
            decoder_attention_mask=decoder_attention_mask,
            output_attentions=True,
        )

        encoder_attentions = outputs_encoder_decoder["encoder_attentions"]
        self.assertEqual(len(encoder_attentions), config.num_hidden_layers)

        # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token)
        image_size = to_2tuple(encoder_model.config.image_size)
        patch_size = to_2tuple(encoder_model.config.patch_size)
        num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
        seq_len = num_patches + 1
        self.assertEqual(encoder_attentions[0].shape[-3:], (config.num_attention_heads, seq_len, seq_len))

        decoder_attentions = outputs_encoder_decoder["decoder_attentions"]
        num_decoder_layers = (
            decoder_config.num_decoder_layers
            if hasattr(decoder_config, "num_decoder_layers")
            else decoder_config.num_hidden_layers
        )
        self.assertEqual(len(decoder_attentions), num_decoder_layers)

        self.assertEqual(
            decoder_attentions[0].shape[-3:],
            (decoder_config.num_attention_heads, decoder_input_ids.shape[-1], decoder_input_ids.shape[-1]),
        )

        cross_attentions = outputs_encoder_decoder["cross_attentions"]
        self.assertEqual(len(cross_attentions), num_decoder_layers)

        cross_attention_input_seq_len = decoder_input_ids.shape[-1]
        self.assertEqual(
            cross_attentions[0].shape[-3:],
            (decoder_config.num_attention_heads, cross_attention_input_seq_len, seq_len),
        )

    def check_encoder_decoder_model_generate(self, config, decoder_config, pixel_values=None, **kwargs):
        encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
        enc_dec_model = VisionEncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
        enc_dec_model.to(torch_device)

        inputs = pixel_values

        # Bert does not have a bos token id, so use pad_token_id instead
        generated_output = enc_dec_model.generate(
            inputs, decoder_start_token_id=enc_dec_model.config.decoder.pad_token_id
        )
        self.assertEqual(generated_output.shape, (inputs.shape[0],) + (decoder_config.max_length,))

    def test_encoder_decoder_model(self):
        input_ids_dict = self.prepare_config_and_inputs()
        self.check_encoder_decoder_model(**input_ids_dict)

    def test_encoder_decoder_model_from_pretrained_configs(self):
        input_ids_dict = self.prepare_config_and_inputs()
        self.check_encoder_decoder_model_from_pretrained_configs(**input_ids_dict)

    def test_encoder_decoder_model_from_pretrained(self):
        input_ids_dict = self.prepare_config_and_inputs()
        self.check_encoder_decoder_model_from_pretrained(**input_ids_dict, return_dict=False)

    def test_encoder_decoder_model_from_pretrained_return_dict(self):
        input_ids_dict = self.prepare_config_and_inputs()
        self.check_encoder_decoder_model_from_pretrained(**input_ids_dict, return_dict=True)

    def test_save_and_load_from_pretrained(self):
        input_ids_dict = self.prepare_config_and_inputs()
        self.check_save_and_load(**input_ids_dict)

    def test_save_and_load_from_encoder_decoder_pretrained(self):
        input_ids_dict = self.prepare_config_and_inputs()
        self.check_save_and_load_encoder_decoder_model(**input_ids_dict)

    def test_encoder_decoder_model_output_attentions(self):
        input_ids_dict = self.prepare_config_and_inputs()
        self.check_encoder_decoder_model_output_attentions(**input_ids_dict)

    def test_encoder_decoder_model_generate(self):
        input_ids_dict = self.prepare_config_and_inputs()
        self.check_encoder_decoder_model_generate(**input_ids_dict)

    @slow
    def test_real_model_save_load_from_pretrained(self):
        model_2, inputs = self.get_pretrained_model_and_inputs()
        model_2.to(torch_device)

        with torch.no_grad():
            outputs = model_2(**inputs)
            out_2 = outputs[0].cpu().numpy()
            out_2[np.isnan(out_2)] = 0

            with tempfile.TemporaryDirectory() as tmp_dirname:
                model_2.save_pretrained(tmp_dirname)
                model_1 = VisionEncoderDecoderModel.from_pretrained(tmp_dirname)
                model_1.to(torch_device)

                after_outputs = model_1(**inputs)
                out_1 = after_outputs[0].cpu().numpy()
                out_1[np.isnan(out_1)] = 0
                max_diff = np.amax(np.abs(out_1 - out_2))
                self.assertLessEqual(max_diff, 1e-5)


@require_torch
class DeiT2RobertaModelTest(EncoderDecoderMixin, unittest.TestCase):
    def get_pretrained_model_and_inputs(self):
        model = VisionEncoderDecoderModel.from_encoder_decoder_pretrained(
            "hf-internal-testing/tiny-random-deit", "hf-internal-testing/tiny-random-roberta"
        )
        batch_size = 13
        pixel_values = floats_tensor(
            [
                batch_size,
                model.encoder.config.num_channels,
                model.encoder.config.image_size,
                model.encoder.config.image_size,
            ]
        )
        # for DEiT, the sequence length is equal to the number of patches + 2 (for the [CLS] and distillation tokens)
        seq_len = (model.encoder.config.image_size // model.encoder.config.patch_size) ** 2 + 2
        attention_mask = random_attention_mask([batch_size, seq_len])
        decoder_input_ids = ids_tensor([batch_size, 4], model.decoder.config.vocab_size)
        decoder_attention_mask = random_attention_mask([batch_size, 4])
        inputs = {
            "pixel_values": pixel_values,
            "attention_mask": attention_mask,
            "decoder_input_ids": decoder_input_ids,
            "decoder_attention_mask": decoder_attention_mask,
        }

        return model, inputs

    def check_encoder_decoder_model_output_attentions(
        self,
        config,
        attention_mask,
        decoder_config,
        decoder_input_ids,
        decoder_attention_mask,
        labels=None,
        pixel_values=None,
        **kwargs
    ):
        # make the decoder inputs a different shape from the encoder inputs to harden the test
        decoder_input_ids = decoder_input_ids[:, :-1]
        decoder_attention_mask = decoder_attention_mask[:, :-1]
        encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
        enc_dec_model = VisionEncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
        enc_dec_model.to(torch_device)
        outputs_encoder_decoder = enc_dec_model(
            pixel_values=pixel_values,
            attention_mask=attention_mask,
            decoder_input_ids=decoder_input_ids,
            decoder_attention_mask=decoder_attention_mask,
            output_attentions=True,
        )

        encoder_attentions = outputs_encoder_decoder["encoder_attentions"]
        self.assertEqual(len(encoder_attentions), config.num_hidden_layers)

        # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens)
        image_size = to_2tuple(encoder_model.config.image_size)
        patch_size = to_2tuple(encoder_model.config.patch_size)
        num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
        seq_len = num_patches + 2
        self.assertEqual(encoder_attentions[0].shape[-3:], (config.num_attention_heads, seq_len, seq_len))

        decoder_attentions = outputs_encoder_decoder["decoder_attentions"]
        num_decoder_layers = (
            decoder_config.num_decoder_layers
            if hasattr(decoder_config, "num_decoder_layers")
            else decoder_config.num_hidden_layers
        )
        self.assertEqual(len(decoder_attentions), num_decoder_layers)

        self.assertEqual(
            decoder_attentions[0].shape[-3:],
            (decoder_config.num_attention_heads, decoder_input_ids.shape[-1], decoder_input_ids.shape[-1]),
        )

        cross_attentions = outputs_encoder_decoder["cross_attentions"]
        self.assertEqual(len(cross_attentions), num_decoder_layers)

        cross_attention_input_seq_len = decoder_input_ids.shape[-1]
        self.assertEqual(
            cross_attentions[0].shape[-3:],
            (decoder_config.num_attention_heads, cross_attention_input_seq_len, seq_len),
        )

    def get_encoder_decoder_model(self, config, decoder_config):
        encoder_model = DeiTModel(config).eval()
        decoder_model = BertLMHeadModel(decoder_config).eval()
        return encoder_model, decoder_model

    def prepare_config_and_inputs(self):
        bert_model_tester = BertModelTester(self)
        deit_model_tester = DeiTModelTester(self)
        encoder_config_and_inputs = deit_model_tester.prepare_config_and_inputs()
        decoder_config_and_inputs = bert_model_tester.prepare_config_and_inputs_for_decoder()
        config, pixel_values, _ = encoder_config_and_inputs
        input_mask = None  # TODO add once attention_mask is supported for vision models
        (
            decoder_config,
            decoder_input_ids,
            decoder_token_type_ids,
            decoder_input_mask,
            decoder_sequence_labels,
            decoder_token_labels,
            decoder_choice_labels,
            encoder_attention_mask,
            _,
        ) = decoder_config_and_inputs

        # make sure that cross attention layers are added
        decoder_config.add_cross_attention = True
        return {
            "config": config,
            "pixel_values": pixel_values,
            "attention_mask": input_mask,
            "decoder_config": decoder_config,
            "decoder_input_ids": decoder_input_ids,
            "decoder_token_type_ids": decoder_token_type_ids,
            "decoder_attention_mask": decoder_input_mask,
            "decoder_sequence_labels": decoder_sequence_labels,
            "decoder_token_labels": decoder_token_labels,
            "decoder_choice_labels": decoder_choice_labels,
            "labels": decoder_token_labels,
        }


@require_torch
class ViT2BertModelTest(EncoderDecoderMixin, unittest.TestCase):
    def get_pretrained_model_and_inputs(self):
        model = VisionEncoderDecoderModel.from_encoder_decoder_pretrained(
            "hf-internal-testing/tiny-random-vit", "hf-internal-testing/tiny-bert"
        )
        batch_size = 13
        pixel_values = floats_tensor(
            [
                batch_size,
                model.encoder.config.num_channels,
                model.encoder.config.image_size,
                model.encoder.config.image_size,
            ]
        )
        # for ViT, the sequence length is equal to the number of patches + 1 (for the [CLS] token)
        seq_len = (model.encoder.config.image_size // model.encoder.config.patch_size) ** 2 + 1
        attention_mask = random_attention_mask([batch_size, seq_len])
        decoder_input_ids = ids_tensor([batch_size, 4], model.decoder.config.vocab_size)
        decoder_attention_mask = random_attention_mask([batch_size, 4])
        inputs = {
            "pixel_values": pixel_values,
            "attention_mask": attention_mask,
            "decoder_input_ids": decoder_input_ids,
            "decoder_attention_mask": decoder_attention_mask,
        }

        return model, inputs

    def get_encoder_decoder_model(self, config, decoder_config):
        encoder_model = ViTModel(config).eval()
        decoder_model = BertLMHeadModel(decoder_config).eval()
        return encoder_model, decoder_model

    def prepare_config_and_inputs(self):
        vit_model_tester = ViTModelTester(self)
        bert_model_tester = BertModelTester(self)
        encoder_config_and_inputs = vit_model_tester.prepare_config_and_inputs()
        decoder_config_and_inputs = bert_model_tester.prepare_config_and_inputs_for_decoder()

        config, pixel_values, _ = encoder_config_and_inputs
        input_mask = None  # TODO add once attention_mask is supported for vision models

        (
            decoder_config,
            decoder_input_ids,
            decoder_token_type_ids,
            decoder_input_mask,
            decoder_sequence_labels,
            decoder_token_labels,
            decoder_choice_labels,
            encoder_attention_mask,
            _,
        ) = decoder_config_and_inputs

        # make sure that cross attention layers are added
        decoder_config.add_cross_attention = True
        return {
            "config": config,
            "pixel_values": pixel_values,
            "attention_mask": input_mask,
            "decoder_config": decoder_config,
            "decoder_input_ids": decoder_input_ids,
            "decoder_token_type_ids": decoder_token_type_ids,
            "decoder_attention_mask": decoder_input_mask,
            "decoder_sequence_labels": decoder_sequence_labels,
            "decoder_token_labels": decoder_token_labels,
            "decoder_choice_labels": decoder_choice_labels,
            "labels": decoder_token_labels,
        }


@require_torch
class ViT2TrOCR(EncoderDecoderMixin, unittest.TestCase):
    def get_encoder_decoder_model(self, config, decoder_config):
        encoder_model = ViTModel(config).eval()
        decoder_model = TrOCRForCausalLM(decoder_config).eval()
        return encoder_model, decoder_model

    def prepare_config_and_inputs(self):
        model_tester_encoder = ViTModelTester(self, batch_size=13)
        model_tester_decoder = TrOCRStandaloneDecoderModelTester(
            self, batch_size=13, d_model=32, max_position_embeddings=512
        )
        encoder_config_and_inputs = model_tester_encoder.prepare_config_and_inputs()
        decoder_config_and_inputs = model_tester_decoder.prepare_config_and_inputs()
        config, pixel_values, _ = encoder_config_and_inputs
        input_mask = None  # TODO add once attention_mask is supported for vision models
        (decoder_config, decoder_input_ids, decoder_attention_mask, _) = decoder_config_and_inputs

        # make sure that cross attention layers are added
        decoder_config.add_cross_attention = True
        #  disable cache for now
        decoder_config.use_cache = False
        return {
            "config": config,
            "pixel_values": pixel_values,
            "attention_mask": input_mask,
            "decoder_config": decoder_config,
            "decoder_input_ids": decoder_input_ids,
            "decoder_attention_mask": decoder_attention_mask,
        }

    # there are no published pretrained TrOCR checkpoints for now
    def test_real_model_save_load_from_pretrained(self):
        pass


@require_vision
@require_torch
class TrOCRModelIntegrationTest(unittest.TestCase):
    @cached_property
    def default_processor(self):
        return TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten") if is_vision_available() else None

    @slow
    def test_inference_handwritten(self):
        model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten").to(torch_device)

        ds = load_dataset("hf-internal-testing/fixtures_ocr", split="test")
        image = Image.open(ds[0]["file"]).convert("RGB")

        processor = self.default_processor
        pixel_values = processor(images=image, return_tensors="pt").pixel_values.to(torch_device)

        # forward pass
        decoder_input_ids = torch.tensor([[model.config.decoder.decoder_start_token_id]]).to(torch_device)
        outputs = model(pixel_values=pixel_values, decoder_input_ids=decoder_input_ids)
        logits = outputs.logits

        # verify the logits
        expected_shape = torch.Size((1, 1, model.decoder.config.vocab_size))
        self.assertEqual(outputs.logits.shape, expected_shape)

        expected_slice = torch.tensor(
            [-1.4502, -4.6683, -0.5347, -2.9291, 9.1435, -3.0571, 8.9764, 1.7560, 8.7358, -1.5311]
        ).to(torch_device)

        self.assertTrue(torch.allclose(logits[0, 0, :10], expected_slice, atol=1e-4))

    @slow
    def test_inference_printed(self):
        model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-printed").to(torch_device)

        ds = load_dataset("hf-internal-testing/fixtures_ocr", split="test")
        image = Image.open(ds[1]["file"]).convert("RGB")

        processor = self.default_processor
        pixel_values = processor(images=image, return_tensors="pt").pixel_values.to(torch_device)

        # forward pass
        decoder_input_ids = torch.tensor([[model.config.decoder.decoder_start_token_id]]).to(torch_device)
        outputs = model(pixel_values=pixel_values, decoder_input_ids=decoder_input_ids)
        logits = outputs.logits

        # verify the logits
        expected_shape = torch.Size((1, 1, model.decoder.config.vocab_size))
        self.assertEqual(outputs.logits.shape, expected_shape)

        expected_slice = torch.tensor(
            [-5.6816, -5.8388, 1.1398, -6.9034, 6.8505, -2.4393, 1.2284, -1.0232, -1.9661, -3.9210]
        ).to(torch_device)

        self.assertTrue(torch.allclose(logits[0, 0, :10], expected_slice, atol=1e-4))
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725


@require_vision
@require_torch
class ViT2GPT2ModelIntegrationTest(unittest.TestCase):
    @slow
    def test_inference_coco_en(self):

        loc = "ydshieh/vit-gpt2-coco-en"

        feature_extractor = ViTFeatureExtractor.from_pretrained(loc)
        tokenizer = AutoTokenizer.from_pretrained(loc)
        model = VisionEncoderDecoderModel.from_pretrained(loc)
        model.to(torch_device)
        model.eval()

        # We will verify our results on an image of cute cats
        img = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
        pixel_values = feature_extractor(images=img, return_tensors="pt").pixel_values.to(torch_device)

        decoder_input_ids = torch.tensor([[model.config.decoder_start_token_id]]).to(torch_device)

        with torch.no_grad():
            logits = model(pixel_values, decoder_input_ids)[0].detach().cpu().numpy()

        # verify the logits
        expected_shape = (1, 1, model.config.decoder.vocab_size)
        self.assertEqual(logits.shape, expected_shape)

        EXPECTED_LOGIT_SLICE = np.array(
            [
                -38.705807,
                -30.639929,
                -31.41903,
                -39.012012,
                -38.38696,
                -34.887207,
                -33.290855,
                -35.68447,
                -38.508484,
                -36.124645,
            ]
        )
        max_diff = np.amax(np.abs(logits[0, 0, :10] - EXPECTED_LOGIT_SLICE))
        self.assertLessEqual(max_diff, 1e-4)

        def generate_step(pixel_values):

            outputs = model.generate(
                pixel_values, max_length=16, num_beams=4, return_dict_in_generate=True, output_scores=True
            )
            output_ids = outputs.sequences
            preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
            preds = [pred.strip() for pred in preds]

            return preds, outputs.sequences_scores.detach().cpu().numpy()

        preds, scores = generate_step(pixel_values)

        EXPECTED_SCORES = np.array([-0.59562886])
        max_diff = np.amax(np.abs(scores - EXPECTED_SCORES))
        self.assertLessEqual(max_diff, 1e-4)

        # should produce
        # ["a cat laying on top of a couch next to another cat"]
        self.assertEqual(preds, ["a cat laying on top of a couch next to another cat"])