test_modeling_flax_vision_encoder_decoder.py 20.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
# coding=utf-8
# Copyright 2021 HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import tempfile
import unittest

import numpy as np

from transformers import is_flax_available, is_torch_available, is_vision_available
from transformers.testing_utils import is_pt_flax_cross_test, require_flax, require_vision, slow, torch_device

from .test_modeling_flax_common import floats_tensor, ids_tensor
from .test_modeling_flax_gpt2 import FlaxGPT2ModelTester
from .test_modeling_flax_vit import FlaxViTModelTester


if is_flax_available():
    from transformers import (
        AutoTokenizer,
        FlaxGPT2LMHeadModel,
        FlaxVisionEncoderDecoderModel,
        FlaxViTModel,
        VisionEncoderDecoderConfig,
    )
    from transformers.modeling_flax_pytorch_utils import (
        convert_pytorch_state_dict_to_flax,
        load_flax_weights_in_pytorch_model,
    )

if is_torch_available():
    import torch

    from transformers import VisionEncoderDecoderModel

if is_vision_available():
    from PIL import Image

    from transformers import ViTFeatureExtractor


@require_flax
class FlaxEncoderDecoderMixin:
    def get_encoder_decoder_model(self, config, decoder_config):
        raise NotImplementedError

    def prepare_config_and_inputs(self):
        raise NotImplementedError

    def get_pretrained_model(self):
        raise NotImplementedError

    def check_encoder_decoder_model_from_pretrained_configs(
        self,
        config,
        pixel_values,
        encoder_hidden_states,
        decoder_config,
        decoder_input_ids,
        decoder_attention_mask,
        **kwargs
    ):
        encoder_decoder_config = VisionEncoderDecoderConfig.from_encoder_decoder_configs(config, decoder_config)
        self.assertTrue(encoder_decoder_config.decoder.is_decoder)

        enc_dec_model = FlaxVisionEncoderDecoderModel(encoder_decoder_config)

        self.assertTrue(enc_dec_model.config.is_encoder_decoder)

        outputs_encoder_decoder = enc_dec_model(
            pixel_values=pixel_values,
            decoder_input_ids=decoder_input_ids,
            decoder_attention_mask=decoder_attention_mask,
        )

        self.assertEqual(
            outputs_encoder_decoder["logits"].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,))
        )
        self.assertEqual(outputs_encoder_decoder["encoder_last_hidden_state"].shape[0], pixel_values.shape[0])
        self.assertEqual(outputs_encoder_decoder["encoder_last_hidden_state"].shape[-1], config.hidden_size)

    def check_encoder_decoder_model_from_pretrained(
        self,
        config,
        pixel_values,
        encoder_hidden_states,
        decoder_config,
        decoder_input_ids,
        decoder_attention_mask,
        return_dict,
        **kwargs
    ):
        encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
        kwargs = {"encoder_model": encoder_model, "decoder_model": decoder_model, "return_dict": return_dict}
        enc_dec_model = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained(**kwargs)
        outputs_encoder_decoder = enc_dec_model(
            pixel_values=pixel_values,
            decoder_input_ids=decoder_input_ids,
            decoder_attention_mask=decoder_attention_mask,
            return_dict=True,
        )

        self.assertEqual(
            outputs_encoder_decoder["logits"].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,))
        )
        self.assertEqual(outputs_encoder_decoder["encoder_last_hidden_state"].shape[0], pixel_values.shape[0])
        self.assertEqual(outputs_encoder_decoder["encoder_last_hidden_state"].shape[-1], config.hidden_size)

    def check_save_and_load(
        self,
        config,
        pixel_values,
        encoder_hidden_states,
        decoder_config,
        decoder_input_ids,
        decoder_attention_mask,
        **kwargs
    ):
        encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
        kwargs = {"encoder_model": encoder_model, "decoder_model": decoder_model}
        enc_dec_model = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained(**kwargs)

        outputs = enc_dec_model(
            pixel_values=pixel_values,
            decoder_input_ids=decoder_input_ids,
            decoder_attention_mask=decoder_attention_mask,
        )
        out_2 = np.array(outputs[0])
        out_2[np.isnan(out_2)] = 0

        with tempfile.TemporaryDirectory() as tmpdirname:
            enc_dec_model.save_pretrained(tmpdirname)
            FlaxVisionEncoderDecoderModel.from_pretrained(tmpdirname)

            after_outputs = enc_dec_model(
                pixel_values=pixel_values,
                decoder_input_ids=decoder_input_ids,
                decoder_attention_mask=decoder_attention_mask,
            )
            out_1 = np.array(after_outputs[0])
            out_1[np.isnan(out_1)] = 0
            max_diff = np.amax(np.abs(out_1 - out_2))
            self.assertLessEqual(max_diff, 1e-5)

    def check_encoder_decoder_model_output_attentions(
        self,
        config,
        pixel_values,
        encoder_hidden_states,
        decoder_config,
        decoder_input_ids,
        decoder_attention_mask,
        **kwargs
    ):
        # make the decoder inputs a different shape from the encoder inputs to harden the test
        decoder_input_ids = decoder_input_ids[:, :-1]
        decoder_attention_mask = decoder_attention_mask[:, :-1]
        encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
        kwargs = {"encoder_model": encoder_model, "decoder_model": decoder_model}
        enc_dec_model = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained(**kwargs)
        outputs_encoder_decoder = enc_dec_model(
            pixel_values=pixel_values,
            decoder_input_ids=decoder_input_ids,
            decoder_attention_mask=decoder_attention_mask,
            output_attentions=True,
        )

        encoder_attentions = outputs_encoder_decoder["encoder_attentions"]
        self.assertEqual(len(encoder_attentions), config.num_hidden_layers)

        self.assertEqual(encoder_attentions[0].shape[-3:-2], (config.num_attention_heads,))

        decoder_attentions = outputs_encoder_decoder["decoder_attentions"]
        num_decoder_layers = (
            decoder_config.num_decoder_layers
            if hasattr(decoder_config, "num_decoder_layers")
            else decoder_config.num_hidden_layers
        )
        self.assertEqual(len(decoder_attentions), num_decoder_layers)

        self.assertEqual(
            decoder_attentions[0].shape[-3:],
            (decoder_config.num_attention_heads, decoder_input_ids.shape[-1], decoder_input_ids.shape[-1]),
        )

        cross_attentions = outputs_encoder_decoder["cross_attentions"]
        self.assertEqual(len(cross_attentions), num_decoder_layers)

        cross_attention_input_seq_len = decoder_input_ids.shape[-1] * (
            1 + (decoder_config.ngram if hasattr(decoder_config, "ngram") else 0)
        )
        self.assertEqual(
            cross_attentions[0].shape[-3:-1],
            (decoder_config.num_attention_heads, cross_attention_input_seq_len),
        )

    def check_encoder_decoder_model_generate(self, pixel_values, config, decoder_config, **kwargs):
        encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
        kwargs = {"encoder_model": encoder_model, "decoder_model": decoder_model}
        enc_dec_model = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained(**kwargs)

        pad_token_id = enc_dec_model.config.decoder.pad_token_id
        eos_token_id = enc_dec_model.config.decoder.eos_token_id
        decoder_start_token_id = enc_dec_model.config.decoder.decoder_start_token_id

        # Copied from generation_utils (GPT2 doesn't have `pad_token_id`)
        if pad_token_id is None and eos_token_id is not None:
            pad_token_id = eos_token_id
        if decoder_start_token_id is None:
            decoder_start_token_id = enc_dec_model.config.decoder.bos_token_id

        # Bert does not have a bos token id, so use pad_token_id instead
        # Copied from `test_modeling_encoder_decoder.py`
        if decoder_start_token_id is None:
            decoder_start_token_id = pad_token_id

        generated_output = enc_dec_model.generate(
            pixel_values,
            pad_token_id=pad_token_id,
            eos_token_id=eos_token_id,
            decoder_start_token_id=decoder_start_token_id,
        )
        generated_sequences = generated_output.sequences
        self.assertEqual(generated_sequences.shape, (pixel_values.shape[0],) + (decoder_config.max_length,))

    def check_pt_flax_equivalence(self, pt_model, fx_model, inputs_dict):

        pt_model.to(torch_device)
        pt_model.eval()

        # prepare inputs
        flax_inputs = inputs_dict
        pt_inputs = {k: torch.tensor(v.tolist()) for k, v in flax_inputs.items()}

        with torch.no_grad():
            pt_outputs = pt_model(**pt_inputs).to_tuple()

        fx_outputs = fx_model(**inputs_dict).to_tuple()
        self.assertEqual(len(fx_outputs), len(pt_outputs), "Output lengths differ between Flax and PyTorch")
        for fx_output, pt_output in zip(fx_outputs, pt_outputs):
            self.assert_almost_equals(fx_output, pt_output.numpy(), 1e-5)

        # PT -> Flax
        with tempfile.TemporaryDirectory() as tmpdirname:
            pt_model.save_pretrained(tmpdirname)
            fx_model_loaded = FlaxVisionEncoderDecoderModel.from_pretrained(tmpdirname, from_pt=True)

        fx_outputs_loaded = fx_model_loaded(**inputs_dict).to_tuple()
        self.assertEqual(len(fx_outputs_loaded), len(pt_outputs), "Output lengths differ between Flax and PyTorch")
        for fx_output_loaded, pt_output in zip(fx_outputs_loaded, pt_outputs):
            self.assert_almost_equals(fx_output_loaded, pt_output.numpy(), 1e-5)

        # Flax -> PT
        with tempfile.TemporaryDirectory() as tmpdirname:
            fx_model.save_pretrained(tmpdirname)
            pt_model_loaded = VisionEncoderDecoderModel.from_pretrained(tmpdirname, from_flax=True)

        pt_model_loaded.to(torch_device)
        pt_model_loaded.eval()

        with torch.no_grad():
            pt_outputs_loaded = pt_model_loaded(**pt_inputs).to_tuple()

        self.assertEqual(len(fx_outputs), len(pt_outputs_loaded), "Output lengths differ between Flax and PyTorch")
        for fx_output, pt_output_loaded in zip(fx_outputs, pt_outputs_loaded):
            self.assert_almost_equals(fx_output, pt_output_loaded.numpy(), 1e-5)

    def check_equivalence_pt_to_flax(self, config, decoder_config, inputs_dict):

        encoder_decoder_config = VisionEncoderDecoderConfig.from_encoder_decoder_configs(config, decoder_config)

        pt_model = VisionEncoderDecoderModel(encoder_decoder_config)
        fx_model = FlaxVisionEncoderDecoderModel(encoder_decoder_config)

        fx_state = convert_pytorch_state_dict_to_flax(pt_model.state_dict(), fx_model)
        fx_model.params = fx_state

        self.check_pt_flax_equivalence(pt_model, fx_model, inputs_dict)

    def check_equivalence_flax_to_pt(self, config, decoder_config, inputs_dict):

        encoder_decoder_config = VisionEncoderDecoderConfig.from_encoder_decoder_configs(config, decoder_config)

        pt_model = VisionEncoderDecoderModel(encoder_decoder_config)
        fx_model = FlaxVisionEncoderDecoderModel(encoder_decoder_config)

        pt_model = load_flax_weights_in_pytorch_model(pt_model, fx_model.params)

        self.check_pt_flax_equivalence(pt_model, fx_model, inputs_dict)

    def test_encoder_decoder_model_from_pretrained_configs(self):
        config_inputs_dict = self.prepare_config_and_inputs()
        self.check_encoder_decoder_model_from_pretrained_configs(**config_inputs_dict)

    def test_encoder_decoder_model_from_pretrained(self):
        config_inputs_dict = self.prepare_config_and_inputs()
        self.check_encoder_decoder_model_from_pretrained(**config_inputs_dict, return_dict=False)

    def test_encoder_decoder_model_from_pretrained_return_dict(self):
        config_inputs_dict = self.prepare_config_and_inputs()
        self.check_encoder_decoder_model_from_pretrained(**config_inputs_dict, return_dict=True)

    def test_save_and_load_from_pretrained(self):
        config_inputs_dict = self.prepare_config_and_inputs()
        self.check_save_and_load(**config_inputs_dict)

    def test_encoder_decoder_model_output_attentions(self):
        config_inputs_dict = self.prepare_config_and_inputs()
        self.check_encoder_decoder_model_output_attentions(**config_inputs_dict)

    def test_encoder_decoder_model_generate(self):
        config_inputs_dict = self.prepare_config_and_inputs()
        self.check_encoder_decoder_model_generate(**config_inputs_dict)

    def assert_almost_equals(self, a: np.ndarray, b: np.ndarray, tol: float):
        diff = np.abs((a - b)).max()
        self.assertLessEqual(diff, tol, f"Difference between torch and flax is {diff} (>= {tol}).")

    @is_pt_flax_cross_test
    def test_pt_flax_equivalence(self):

        config_inputs_dict = self.prepare_config_and_inputs()
        config = config_inputs_dict.pop("config")
        decoder_config = config_inputs_dict.pop("decoder_config")

        inputs_dict = config_inputs_dict
        # `encoder_hidden_states` is not used in model call/forward
        del inputs_dict["encoder_hidden_states"]

        # Avoid the case where a sequence has no place to attend (after combined with the causal attention mask)
        batch_size = inputs_dict["decoder_attention_mask"].shape[0]
        inputs_dict["decoder_attention_mask"] = np.concatenate(
            [np.ones(shape=(batch_size, 1)), inputs_dict["decoder_attention_mask"][:, 1:]], axis=1
        )

        # Flax models don't use the `use_cache` option and cache is not returned as a default.
        # So we disable `use_cache` here for PyTorch model.
        decoder_config.use_cache = False

        self.assertTrue(decoder_config.cross_attention_hidden_size is None)

        # check without `enc_to_dec_proj` projection
        self.assertTrue(config.hidden_size == decoder_config.hidden_size)
        self.check_equivalence_pt_to_flax(config, decoder_config, inputs_dict)
        self.check_equivalence_flax_to_pt(config, decoder_config, inputs_dict)

        # check `enc_to_dec_proj` work as expected
        decoder_config.hidden_size = decoder_config.hidden_size * 2
        self.assertTrue(config.hidden_size != decoder_config.hidden_size)
        self.check_equivalence_pt_to_flax(config, decoder_config, inputs_dict)
        self.check_equivalence_flax_to_pt(config, decoder_config, inputs_dict)

    @slow
    def test_real_model_save_load_from_pretrained(self):
        model_2 = self.get_pretrained_model()
        pixel_values = floats_tensor(
            [
                13,
                model_2.config.encoder.num_channels,
                model_2.config.encoder.image_size,
                model_2.config.encoder.image_size,
            ]
        )
        decoder_input_ids = ids_tensor([13, 1], model_2.config.decoder.vocab_size)

        outputs = model_2(
            pixel_values=pixel_values,
            decoder_input_ids=decoder_input_ids,
        )
        out_2 = np.array(outputs[0])
        out_2[np.isnan(out_2)] = 0

        with tempfile.TemporaryDirectory() as tmp_dirname:
            model_2.save_pretrained(tmp_dirname)
            model_1 = FlaxVisionEncoderDecoderModel.from_pretrained(tmp_dirname)

            after_outputs = model_1(
                pixel_values=pixel_values,
                decoder_input_ids=decoder_input_ids,
            )
            out_1 = np.array(after_outputs[0])
            out_1[np.isnan(out_1)] = 0
            max_diff = np.amax(np.abs(out_1 - out_2))
            self.assertLessEqual(max_diff, 1e-5)


@require_flax
class FlaxViT2GPT2EncoderDecoderModelTest(FlaxEncoderDecoderMixin, unittest.TestCase):
    def get_encoder_decoder_model(self, config, decoder_config):
        encoder_model = FlaxViTModel(config)
        decoder_model = FlaxGPT2LMHeadModel(decoder_config)
        return encoder_model, decoder_model

    def prepare_config_and_inputs(self):
        model_tester_encoder = FlaxViTModelTester(self, batch_size=13)
        model_tester_decoder = FlaxGPT2ModelTester(self, batch_size=13)
        encoder_config_and_inputs = model_tester_encoder.prepare_config_and_inputs()
        decoder_config_and_inputs = model_tester_decoder.prepare_config_and_inputs_for_decoder()
        (config, pixel_values) = encoder_config_and_inputs
        (
            decoder_config,
            decoder_input_ids,
            decoder_attention_mask,
            encoder_hidden_states,
            encoder_attention_mask,
        ) = decoder_config_and_inputs

        # make sure that cross attention layers are added
        decoder_config.add_cross_attention = True
        return {
            "config": config,
            "pixel_values": pixel_values,
            "decoder_config": decoder_config,
            "decoder_input_ids": decoder_input_ids,
            "decoder_attention_mask": decoder_attention_mask,
            "encoder_hidden_states": encoder_hidden_states,  # This is not used in the tests.
        }

    def get_pretrained_model(self):
        return FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained(
            "google/vit-base-patch16-224-in21k", "gpt2"
        )


@require_flax
class FlaxVisionEncoderDecoderModelTest(unittest.TestCase):
    def get_from_encoderdecoder_pretrained_model(self):
        return FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained(
            "google/vit-base-patch16-224-in21k", "gpt2"
        )

    def _check_configuration_tie(self, model):

        module = model.module.bind(model.params)

        assert id(module.decoder.config) == id(model.config.decoder)
        assert id(module.encoder.config) == id(model.config.encoder)

    @slow
    def test_configuration_tie(self):
        model = self.get_from_encoderdecoder_pretrained_model()
        self._check_configuration_tie(model)


# We will verify our results on an image of cute cats
def prepare_img():
    image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
    return image


@require_vision
@require_flax
class FlaxViT2GPT2ModelIntegrationTest(unittest.TestCase):
    @slow
    def test_inference_coco_en(self):

        loc = "ydshieh/vit-gpt2-coco-en"

        feature_extractor = ViTFeatureExtractor.from_pretrained(loc)
        tokenizer = AutoTokenizer.from_pretrained(loc)
        model = FlaxVisionEncoderDecoderModel.from_pretrained(loc)

        img = prepare_img()
        pixel_values = feature_extractor(images=img, return_tensors="np").pixel_values

        decoder_input_ids = np.array([[model.config.decoder_start_token_id]])
        logits = model(pixel_values, decoder_input_ids)[0]
        logits = np.array(logits)

        # verify the logits
        expected_shape = (1, 1, model.config.decoder.vocab_size)
        self.assertEqual(logits.shape, expected_shape)

        EXPECTED_LOGIT_SLICE = np.array(
            [
                -38.705837,
                -30.639936,
                -31.41905,
                -39.01204,
                -38.38698,
                -34.887215,
                -33.29087,
                -35.684475,
                -38.50852,
                -36.124676,
            ]
        )
        max_diff = np.amax(np.abs(logits[0, 0, :10] - EXPECTED_LOGIT_SLICE))
        self.assertLessEqual(max_diff, 1e-4)

        def generate_step(pixel_values):

            outputs = model.generate(pixel_values, max_length=16, num_beams=4)
            output_ids = outputs.sequences
            preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
            preds = [pred.strip() for pred in preds]

            return preds, outputs.scores

        preds, scores = generate_step(pixel_values)

        EXPECTED_SCORES = np.array([-0.59563464])
        scores = np.array(scores)
        max_diff = np.amax(np.abs(scores - EXPECTED_SCORES))
        self.assertLessEqual(max_diff, 1e-4)

        # should produce
        # ["a cat laying on top of a couch next to another cat"]
        self.assertEqual(preds, ["a cat laying on top of a couch next to another cat"])