test_generation_utils.py 77.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright 2020 The HuggingFace Team Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a clone of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


17
import inspect
18
19
20
import unittest

from transformers import is_torch_available
21
from transformers.testing_utils import require_torch, slow, torch_device
22

23
24
from .test_modeling_common import floats_tensor

25
26
27
28

if is_torch_available():
    import torch

29
30
31
32
33
    from transformers import (
        BartForConditionalGeneration,
        BartTokenizer,
        GPT2LMHeadModel,
        GPT2Tokenizer,
34
35
36
        Speech2TextForConditionalGeneration,
        SpeechEncoderDecoderModel,
        VisionEncoderDecoderModel,
37
38
        top_k_top_p_filtering,
    )
39
40
    from transformers.generation_beam_search import BeamSearchScorer
    from transformers.generation_logits_process import (
41
42
        ForcedBOSTokenLogitsProcessor,
        ForcedEOSTokenLogitsProcessor,
43
        HammingDiversityLogitsProcessor,
44
        InfNanRemoveLogitsProcessor,
45
46
47
48
49
50
51
52
53
        LogitsProcessorList,
        MinLengthLogitsProcessor,
        NoBadWordsLogitsProcessor,
        NoRepeatNGramLogitsProcessor,
        RepetitionPenaltyLogitsProcessor,
        TemperatureLogitsWarper,
        TopKLogitsWarper,
        TopPLogitsWarper,
    )
54
    from transformers.generation_stopping_criteria import MaxLengthCriteria, StoppingCriteriaList
55
    from transformers.generation_utils import (
56
57
        BeamSampleDecoderOnlyOutput,
        BeamSampleEncoderDecoderOutput,
58
59
60
61
62
63
64
        BeamSearchDecoderOnlyOutput,
        BeamSearchEncoderDecoderOutput,
        GreedySearchDecoderOnlyOutput,
        GreedySearchEncoderDecoderOutput,
        SampleDecoderOnlyOutput,
        SampleEncoderDecoderOutput,
    )
65
66
67
68
69


class GenerationTesterMixin:
    model_tester = None
    all_generative_model_classes = ()
Suraj Patil's avatar
Suraj Patil committed
70
    input_name = "input_ids"
71
72
73
74

    def _get_input_ids_and_config(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

Suraj Patil's avatar
Suraj Patil committed
75
76
        input_ids = inputs_dict[self.input_name]
        attention_mask = torch.ones_like(input_ids, dtype=torch.long)
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

        # cut to half length & take max batch_size 3
        max_batch_size = 2
        sequence_length = input_ids.shape[-1] // 2
        input_ids = input_ids[:max_batch_size, :sequence_length]
        attention_mask = attention_mask[:max_batch_size, :sequence_length]

        # generate max 3 tokens
        max_length = input_ids.shape[-1] + 3
        if config.eos_token_id is not None and config.pad_token_id is None:
            # hack to allow generate for models such as GPT2 as is done in `generate()`
            config.pad_token_id = config.eos_token_id
        return config, input_ids, attention_mask, max_length

    @staticmethod
92
93
94
95
96
97
98
99
    def _get_logits_processor_and_kwargs(
        input_length,
        eos_token_id,
        forced_bos_token_id=None,
        forced_eos_token_id=None,
        max_length=None,
        diversity_penalty=None,
    ):
100
101
102
103
104
105
106
107
        process_kwargs = {
            "min_length": input_length + 1,
            "bad_words_ids": [[1, 0]],
            "no_repeat_ngram_size": 2,
            "repetition_penalty": 1.2,
        }
        logits_processor = LogitsProcessorList(
            (
108
109
110
111
112
113
114
                [
                    HammingDiversityLogitsProcessor(diversity_penalty, num_beams=2, num_beam_groups=2),
                ]
                if diversity_penalty is not None
                else []
            )
            + (
115
116
117
118
119
120
                [
                    MinLengthLogitsProcessor(process_kwargs["min_length"], eos_token_id),
                ]
                if eos_token_id is not None
                else []
            )
121
122
123
124
125
126
127
128
129
130
131
132
            + (
                [
                    ForcedBOSTokenLogitsProcessor(forced_bos_token_id),
                ]
                if forced_bos_token_id is not None
                else []
            )
            + (
                [ForcedEOSTokenLogitsProcessor(max_length, forced_eos_token_id)]
                if forced_eos_token_id is not None
                else []
            )
133
134
135
136
137
138
139
140
141
142
143
144
145
            + [
                NoBadWordsLogitsProcessor(process_kwargs["bad_words_ids"], eos_token_id),
                NoRepeatNGramLogitsProcessor(process_kwargs["no_repeat_ngram_size"]),
                RepetitionPenaltyLogitsProcessor(process_kwargs["repetition_penalty"]),
            ]
        )
        return process_kwargs, logits_processor

    @staticmethod
    def _get_warper_and_kwargs(num_beams):
        warp_kwargs = {"top_k": 10, "top_p": 0.7, "temperature": 0.7}
        logits_warper = LogitsProcessorList(
            [
Patrick von Platen's avatar
Patrick von Platen committed
146
                TemperatureLogitsWarper(warp_kwargs["temperature"]),
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
                TopKLogitsWarper(top_k=warp_kwargs["top_k"], min_tokens_to_keep=(2 if num_beams > 1 else 1)),
                TopPLogitsWarper(top_p=warp_kwargs["top_p"], min_tokens_to_keep=(2 if num_beams > 1 else 1)),
            ]
        )
        return warp_kwargs, logits_warper

    @staticmethod
    def _get_beam_scorer_and_kwargs(batch_size, max_length, num_return_sequences=1):
        beam_kwargs = {
            "early_stopping": False,
            "length_penalty": 2.0,
            "num_beams": 2,
            "num_return_sequences": num_return_sequences,
        }
        beam_scorer = BeamSearchScorer(
            batch_size=batch_size,
            num_beams=beam_kwargs["num_beams"],
            device=torch_device,
            length_penalty=beam_kwargs["length_penalty"],
            do_early_stopping=beam_kwargs["early_stopping"],
            num_beam_hyps_to_keep=num_return_sequences,
        )
        return beam_kwargs, beam_scorer

171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
    @staticmethod
    def _get_diverse_beam_scorer_and_kwargs(batch_size, max_length, num_return_sequences=1):
        beam_kwargs = {
            "early_stopping": False,
            "length_penalty": 2.0,
            "num_beams": 2,
            "num_return_sequences": num_return_sequences,
            "num_beam_groups": 2,  # one beam per group
            "diversity_penalty": 2.0,
        }
        beam_scorer = BeamSearchScorer(
            batch_size=batch_size,
            num_beams=beam_kwargs["num_beams"],
            device=torch_device,
            length_penalty=beam_kwargs["length_penalty"],
            do_early_stopping=beam_kwargs["early_stopping"],
            num_beam_hyps_to_keep=num_return_sequences,
            num_beam_groups=beam_kwargs["num_beam_groups"],
        )
        return beam_kwargs, beam_scorer

192
    @staticmethod
193
194
195
    def _get_encoder_outputs(
        model, input_ids, attention_mask, output_attentions=None, output_hidden_states=None, num_interleave=1
    ):
196
        encoder = model.get_encoder()
197
198
199
200
201
202
        encoder_outputs = encoder(
            input_ids,
            attention_mask=attention_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
        )
203
204
205
206
207
208
209
        encoder_outputs["last_hidden_state"] = encoder_outputs.last_hidden_state.repeat_interleave(
            num_interleave, dim=0
        )
        input_ids = torch.zeros_like(input_ids[:, :1]) + model._get_decoder_start_token_id()
        attention_mask = None
        return encoder_outputs, input_ids, attention_mask

210
211
212
213
214
215
216
217
218
219
220
    def _greedy_generate(
        self,
        model,
        input_ids,
        attention_mask,
        max_length,
        output_scores=False,
        output_attentions=False,
        output_hidden_states=False,
        return_dict_in_generate=False,
    ):
221
222
        if model.config.is_encoder_decoder:
            max_length = 4
223
        logits_process_kwargs, logits_processor = self._get_logits_processor_and_kwargs(
224
225
226
227
228
            input_ids.shape[-1],
            eos_token_id=model.config.eos_token_id,
            forced_bos_token_id=model.config.forced_bos_token_id,
            forced_eos_token_id=model.config.forced_eos_token_id,
            max_length=max_length,
229
230
231
232
233
234
235
236
237
238
239
240
241
242
        )

        kwargs = {}

        output_generate = model.generate(
            input_ids,
            attention_mask=attention_mask,
            do_sample=False,
            num_beams=1,
            max_length=max_length,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            output_scores=output_scores,
            return_dict_in_generate=return_dict_in_generate,
243
            remove_invalid_values=True,
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
            **logits_process_kwargs,
        )

        if model.config.is_encoder_decoder:
            encoder_outputs, input_ids, attention_mask = self._get_encoder_outputs(
                model,
                input_ids,
                attention_mask,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
            )
            kwargs["encoder_outputs"] = encoder_outputs

        with torch.no_grad():
            output_greedy = model.greedy_search(
                input_ids,
                max_length=max_length,
                attention_mask=attention_mask,
                logits_processor=logits_processor,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                output_scores=output_scores,
                return_dict_in_generate=return_dict_in_generate,
                **kwargs,
            )
        return output_greedy, output_generate

    def _sample_generate(
        self,
        model,
        input_ids,
        attention_mask,
        max_length,
        num_return_sequences,
        logits_processor,
        logits_warper,
        logits_warper_kwargs,
        process_kwargs,
        output_scores=False,
        output_attentions=False,
        output_hidden_states=False,
        return_dict_in_generate=False,
    ):
        torch.manual_seed(0)
        output_generate = model.generate(
            input_ids,
            do_sample=True,
            num_beams=1,
            max_length=max_length,
            num_return_sequences=num_return_sequences,
            attention_mask=attention_mask,
            output_scores=output_scores,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict_in_generate=return_dict_in_generate,
299
            remove_invalid_values=True,
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
            **logits_warper_kwargs,
            **process_kwargs,
        )

        torch.manual_seed(0)
        kwargs = {}
        if model.config.is_encoder_decoder:
            encoder_outputs, input_ids_clone, attention_mask_clone = self._get_encoder_outputs(
                model,
                input_ids,
                attention_mask,
                num_interleave=num_return_sequences,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
            )
            kwargs["encoder_outputs"] = encoder_outputs
            input_ids_clone = input_ids_clone.repeat_interleave(num_return_sequences, dim=0)
        else:
            attention_mask_clone = attention_mask.repeat_interleave(num_return_sequences, dim=0)
            input_ids_clone = input_ids.repeat_interleave(num_return_sequences, dim=0)

321
322
323
        # prevent flaky generation test failures
        logits_processor.append(InfNanRemoveLogitsProcessor())

324
        with torch.no_grad():
Vasudev Gupta's avatar
Vasudev Gupta committed
325
326
327
328
329
330
331
332
333
334
335
336
            output_sample = model.sample(
                input_ids_clone,
                attention_mask=attention_mask_clone,
                max_length=max_length,
                logits_processor=logits_processor,
                logits_warper=logits_warper,
                output_scores=output_scores,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict_in_generate=return_dict_in_generate,
                **kwargs,
            )
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
        return output_sample, output_generate

    def _beam_search_generate(
        self,
        model,
        input_ids,
        attention_mask,
        max_length,
        beam_scorer,
        beam_kwargs,
        logits_processor,
        logits_process_kwargs,
        output_scores=False,
        output_attentions=False,
        output_hidden_states=False,
        return_dict_in_generate=False,
    ):
        output_generate = model.generate(
            input_ids,
            attention_mask=attention_mask,
            do_sample=False,
            max_length=max_length,
            output_scores=output_scores,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict_in_generate=return_dict_in_generate,
363
            remove_invalid_values=True,
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
            **beam_kwargs,
            **logits_process_kwargs,
        )

        # beam_search does not automatically interleave `batch_size` dim for `num_beams`
        kwargs = {}
        if model.config.is_encoder_decoder:
            encoder_outputs, input_ids_clone, attention_mask_clone = self._get_encoder_outputs(
                model,
                input_ids,
                attention_mask,
                num_interleave=beam_scorer.num_beams,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
            )
            kwargs["encoder_outputs"] = encoder_outputs
            input_ids_clone = input_ids_clone.repeat_interleave(beam_scorer.num_beams, dim=0)
        else:
            attention_mask_clone = attention_mask.repeat_interleave(beam_scorer.num_beams, dim=0)
            input_ids_clone = input_ids.repeat_interleave(beam_scorer.num_beams, dim=0)

        with torch.no_grad():
            output_beam_search = model.beam_search(
                input_ids_clone,
                beam_scorer,
                max_length=max_length,
                attention_mask=attention_mask_clone,
                logits_processor=logits_processor,
                output_scores=output_scores,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict_in_generate=return_dict_in_generate,
                **kwargs,
            )
        return output_generate, output_beam_search

    def _beam_sample_generate(
        self,
        model,
        input_ids,
        attention_mask,
        max_length,
        num_return_sequences,
        beam_scorer,
        beam_kwargs,
        logits_warper,
        logits_warper_kwargs,
        output_scores=False,
        output_attentions=False,
        output_hidden_states=False,
        return_dict_in_generate=False,
    ):
        torch.manual_seed(0)
        output_generate = model.generate(
            input_ids,
            attention_mask=attention_mask,
            do_sample=True,
            max_length=max_length,
            output_scores=output_scores,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict_in_generate=return_dict_in_generate,
426
            remove_invalid_values=True,
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
            **beam_kwargs,
            **logits_warper_kwargs,
        )
        # beam_search does not automatically interleave `batch_size` dim for `num_beams * num_return_sequences`
        kwargs = {}
        if model.config.is_encoder_decoder:
            encoder_outputs, input_ids, attention_mask = self._get_encoder_outputs(
                model,
                input_ids,
                attention_mask,
                num_interleave=beam_scorer.num_beams * num_return_sequences,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
            )
            kwargs["encoder_outputs"] = encoder_outputs
        else:
            attention_mask = attention_mask.repeat_interleave(beam_scorer.num_beams * num_return_sequences, dim=0)

445
446
447
448
        # prevent flaky generation test failures
        logits_processor = LogitsProcessorList()
        logits_processor.append(InfNanRemoveLogitsProcessor())

449
450
451
452
453
454
455
456
        torch.manual_seed(0)
        with torch.no_grad():
            output_beam_sample = model.beam_sample(
                input_ids.repeat_interleave(beam_scorer.num_beams * num_return_sequences, dim=0),
                beam_scorer,
                max_length=max_length,
                attention_mask=attention_mask,
                logits_warper=logits_warper,
457
                logits_processor=logits_processor,
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
                output_scores=output_scores,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict_in_generate=return_dict_in_generate,
                **kwargs,
            )

        return output_generate, output_beam_sample

    def _group_beam_search_generate(
        self,
        model,
        input_ids,
        attention_mask,
        max_length,
        beam_scorer,
        beam_kwargs,
        logits_processor,
        logits_process_kwargs,
        output_scores=False,
        output_attentions=False,
        output_hidden_states=False,
        return_dict_in_generate=False,
    ):
        output_generate = model.generate(
            input_ids,
            attention_mask=attention_mask,
            do_sample=False,
            max_length=max_length,
            output_scores=output_scores,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict_in_generate=return_dict_in_generate,
491
            remove_invalid_values=True,
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
            **beam_kwargs,
            **logits_process_kwargs,
        )

        # group_beam_search does not automatically interleave `batch_size` dim for `num_beams`
        kwargs = {}
        if model.config.is_encoder_decoder:
            encoder_outputs, input_ids_clone, attention_mask_clone = self._get_encoder_outputs(
                model,
                input_ids,
                attention_mask,
                num_interleave=beam_scorer.num_beams,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
            )
            kwargs["encoder_outputs"] = encoder_outputs
            input_ids_clone = input_ids_clone.repeat_interleave(beam_scorer.num_beams, dim=0)
        else:
            attention_mask_clone = attention_mask.repeat_interleave(beam_scorer.num_beams, dim=0)
            input_ids_clone = input_ids.repeat_interleave(beam_scorer.num_beams, dim=0)

        with torch.no_grad():
            output_group_beam_search = model.group_beam_search(
                input_ids_clone,
                beam_scorer,
                max_length=max_length,
                attention_mask=attention_mask_clone,
                logits_processor=logits_processor,
                output_scores=output_scores,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict_in_generate=return_dict_in_generate,
                **kwargs,
            )
        return output_generate, output_group_beam_search

528
    def test_greedy_generate(self):
529
        # check `generate()` and `greedy_search()` are equal
530
531
        for model_class in self.all_generative_model_classes:
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
532
533
534
535
            # test old generation output for backwards compatibility
            model = model_class(config).to(torch_device).eval()
            output_greedy, output_generate = self._greedy_generate(
                model=model, input_ids=input_ids, attention_mask=attention_mask, max_length=max_length
536
            )
537
            self.assertListEqual(output_greedy.tolist(), output_generate.tolist())
538

539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
    def test_greedy_generate_dict_outputs(self):
        for model_class in self.all_generative_model_classes:
            # disable cache
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
            config.use_cache = False
            model = model_class(config).to(torch_device).eval()
            output_greedy, output_generate = self._greedy_generate(
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                max_length=max_length,
                output_scores=True,
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
            )
555
556

            if model.config.is_encoder_decoder:
557
558
559
560
561
                self.assertIsInstance(output_greedy, GreedySearchEncoderDecoderOutput)
                self.assertIsInstance(output_generate, GreedySearchEncoderDecoderOutput)
            else:
                self.assertIsInstance(output_greedy, GreedySearchDecoderOnlyOutput)
                self.assertIsInstance(output_generate, GreedySearchDecoderOnlyOutput)
562

563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
            self.assertListEqual(output_generate.sequences.tolist(), output_greedy.sequences.tolist())

            for output in (output_greedy, output_generate):
                self._check_outputs(output, input_ids, model.config)

    def test_greedy_generate_dict_outputs_use_cache(self):
        for model_class in self.all_generative_model_classes:
            # enable cache
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()

            if not hasattr(config, "use_cache"):
                # only relevant if model has "use_cache"
                return

            config.use_cache = True
578
            config.is_decoder = True
579
580
581
582
            model = model_class(config).to(torch_device).eval()
            output_greedy, output_generate = self._greedy_generate(
                model=model,
                input_ids=input_ids,
583
584
                attention_mask=attention_mask,
                max_length=max_length,
585
586
587
588
                output_scores=True,
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
589
            )
590

591
592
593
594
            self.assertListEqual(output_generate.sequences.tolist(), output_greedy.sequences.tolist())

            for output in (output_greedy, output_generate):
                self._check_outputs(output, input_ids, model.config, use_cache=True)
595
596
597
598

    def test_sample_generate(self):
        for model_class in self.all_generative_model_classes:
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
599
            model = model_class(config).to(torch_device).eval()
600
601
602
603

            if model.config.is_encoder_decoder:
                max_length = 4

604
605
606
607
608
609
610
611
612
            process_kwargs, logits_processor = self._get_logits_processor_and_kwargs(
                input_ids.shape[-1],
                model.config.eos_token_id,
                forced_bos_token_id=model.config.forced_bos_token_id,
                forced_eos_token_id=model.config.forced_eos_token_id,
                max_length=max_length,
            )
            logits_warper_kwargs, logits_warper = self._get_warper_and_kwargs(num_beams=1)

613
614
615
616
617
            # check `generate()` and `sample()` are equal
            output_sample, output_generate = self._sample_generate(
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
618
                max_length=max_length,
619
620
621
622
623
624
625
626
627
628
629
630
                num_return_sequences=1,
                logits_processor=logits_processor,
                logits_warper=logits_warper,
                logits_warper_kwargs=logits_warper_kwargs,
                process_kwargs=process_kwargs,
            )
            self.assertListEqual(output_sample.tolist(), output_generate.tolist())

            # check `generate()` and `sample()` yield equal results for `num_return_sequences`
            output_sample, output_generate = self._sample_generate(
                model=model,
                input_ids=input_ids,
631
                attention_mask=attention_mask,
632
633
634
635
636
637
                max_length=max_length,
                num_return_sequences=3,
                logits_processor=logits_processor,
                logits_warper=logits_warper,
                logits_warper_kwargs=logits_warper_kwargs,
                process_kwargs=process_kwargs,
638
            )
639
            self.assertListEqual(output_sample.tolist(), output_generate.tolist())
640

641
642
643
644
645
646
    def test_sample_generate_dict_output(self):
        for model_class in self.all_generative_model_classes:
            # disable cache
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
            config.use_cache = False
            model = model_class(config).to(torch_device).eval()
647
648
649
            if model.config.is_encoder_decoder:
                max_length = 4

650
            process_kwargs, logits_processor = self._get_logits_processor_and_kwargs(
651
652
653
654
655
                input_ids.shape[-1],
                model.config.eos_token_id,
                forced_bos_token_id=model.config.forced_bos_token_id,
                forced_eos_token_id=model.config.forced_eos_token_id,
                max_length=max_length,
656
657
            )
            logits_warper_kwargs, logits_warper = self._get_warper_and_kwargs(num_beams=1)
658

659
660
661
            output_sample, output_generate = self._sample_generate(
                model=model,
                input_ids=input_ids,
662
                attention_mask=attention_mask,
663
664
665
666
667
668
669
670
671
672
                max_length=max_length,
                num_return_sequences=2,
                logits_processor=logits_processor,
                logits_warper=logits_warper,
                logits_warper_kwargs=logits_warper_kwargs,
                process_kwargs=process_kwargs,
                output_scores=True,
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
673
674
675
            )

            if model.config.is_encoder_decoder:
676
677
                self.assertIsInstance(output_sample, SampleEncoderDecoderOutput)
                self.assertIsInstance(output_generate, SampleEncoderDecoderOutput)
678
            else:
679
680
681
682
683
684
685
                self.assertIsInstance(output_sample, SampleDecoderOnlyOutput)
                self.assertIsInstance(output_generate, SampleDecoderOnlyOutput)

            self.assertListEqual(output_generate.sequences.tolist(), output_sample.sequences.tolist())

            for output in (output_sample, output_generate):
                self._check_outputs(output, input_ids, model.config, num_return_sequences=2)
686
687
688
689

    def test_beam_search_generate(self):
        for model_class in self.all_generative_model_classes:
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
690
691
692
693
694

            # It is important set set the eos_token_id to None to ensure that no sequences
            # shorter than `max_length` can be generated which could lead to flaky circle ci
            # failures if the top `num_return_sequences` beams are all shorter than the longest beam
            config.eos_token_id = None
695
            config.forced_eos_token_id = None
696

697
            model = model_class(config).to(torch_device).eval()
698
699
            if model.config.is_encoder_decoder:
                max_length = 4
700
701

            logits_process_kwargs, logits_processor = self._get_logits_processor_and_kwargs(
702
703
704
705
706
                input_ids.shape[-1],
                config.eos_token_id,
                config.forced_bos_token_id,
                config.forced_eos_token_id,
                max_length,
707
708
            )
            beam_kwargs, beam_scorer = self._get_beam_scorer_and_kwargs(input_ids.shape[0], max_length)
709
710
711
712
713

            # check `generate()` and `beam_search()` are equal
            output_generate, output_beam_search = self._beam_search_generate(
                model=model,
                input_ids=input_ids,
714
715
                attention_mask=attention_mask,
                max_length=max_length,
716
717
718
719
                beam_scorer=beam_scorer,
                beam_kwargs=beam_kwargs,
                logits_process_kwargs=logits_process_kwargs,
                logits_processor=logits_processor,
720
            )
721
            self.assertListEqual(output_generate.tolist(), output_beam_search.tolist())
722
723
724
725
726
727
728
729
730

            # check `generate()` and `beam_search()` are equal for `num_return_sequences`
            num_return_sequences = 2
            if model.config.is_encoder_decoder:
                max_length = 4
            beam_kwargs, beam_scorer = self._get_beam_scorer_and_kwargs(
                input_ids.shape[0], max_length, num_return_sequences=num_return_sequences
            )

731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
            output_generate, output_beam_search = self._beam_search_generate(
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                max_length=max_length,
                beam_scorer=beam_scorer,
                beam_kwargs=beam_kwargs,
                logits_process_kwargs=logits_process_kwargs,
                logits_processor=logits_processor,
            )
            self.assertListEqual(output_generate.tolist(), output_beam_search.tolist())

    def test_beam_search_generate_dict_output(self):
        for model_class in self.all_generative_model_classes:
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
746
747

            # disable cache
748
            config.use_cache = False
749
750
751
752
753

            # It is important set set the eos_token_id to None to ensure that no sequences
            # shorter than `max_length` can be generated which could lead to flaky circle ci
            # failures if the top `num_return_sequences` beams are all shorter than the longest beam
            config.eos_token_id = None
754
            config.forced_eos_token_id = None
755

756
757
758
            model = model_class(config).to(torch_device).eval()
            if model.config.is_encoder_decoder:
                max_length = 4
759
760
761
762
763
764
765
766

            logits_process_kwargs, logits_processor = self._get_logits_processor_and_kwargs(
                input_ids.shape[-1],
                config.eos_token_id,
                config.forced_bos_token_id,
                config.forced_eos_token_id,
                max_length,
            )
767
768
769
770
            beam_kwargs, beam_scorer = self._get_beam_scorer_and_kwargs(input_ids.shape[0], max_length)
            output_generate, output_beam_search = self._beam_search_generate(
                model=model,
                input_ids=input_ids,
771
772
                attention_mask=attention_mask,
                max_length=max_length,
773
774
775
776
777
778
779
780
                beam_scorer=beam_scorer,
                beam_kwargs=beam_kwargs,
                logits_process_kwargs=logits_process_kwargs,
                logits_processor=logits_processor,
                output_scores=True,
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
781
782
            )
            if model.config.is_encoder_decoder:
783
784
                self.assertIsInstance(output_beam_search, BeamSearchEncoderDecoderOutput)
                self.assertIsInstance(output_generate, BeamSearchEncoderDecoderOutput)
785
            else:
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
                self.assertIsInstance(output_beam_search, BeamSearchDecoderOnlyOutput)
                self.assertIsInstance(output_generate, BeamSearchDecoderOnlyOutput)

            self.assertListEqual(output_generate.sequences.tolist(), output_beam_search.sequences.tolist())
            self.assertTrue(
                torch.allclose(output_generate["sequences_scores"], output_beam_search["sequences_scores"], atol=1e-3)
            )
            self.assertTrue(output_generate["sequences_scores"].shape == (output_generate["sequences"].shape[0],))
            self.assertTrue((output_generate["sequences_scores"] < 0).all().item())

            for output in (output_beam_search, output_generate):
                self._check_outputs(output, input_ids, model.config, num_return_sequences=beam_scorer.num_beams)

    def test_beam_search_generate_dict_outputs_use_cache(self):
        for model_class in self.all_generative_model_classes:
            # enable cache
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()

804
805
806
807
            # It is important set set the eos_token_id to None to ensure that no sequences
            # shorter than `max_length` can be generated which could lead to flaky circle ci
            # failures if the top `num_return_sequences` beams are all shorter than the longest beam
            config.eos_token_id = None
808
            config.forced_eos_token_id = None
809

810
811
812
813
814
            if not hasattr(config, "use_cache"):
                # only relevant if model has "use_cache"
                return

            model = model_class(config).to(torch_device).eval()
815
816
            if model.config.is_encoder_decoder:
                max_length = 4
817
818

            logits_process_kwargs, logits_processor = self._get_logits_processor_and_kwargs(
819
820
821
822
823
                input_ids.shape[-1],
                config.eos_token_id,
                config.forced_bos_token_id,
                config.forced_eos_token_id,
                max_length,
824
825
826
827
828
            )

            beam_kwargs, beam_scorer = self._get_beam_scorer_and_kwargs(input_ids.shape[0], max_length)

            config.use_cache = True
829
            config.is_decoder = True
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
            model = model_class(config).to(torch_device).eval()
            output_beam, output_generate = self._beam_search_generate(
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                max_length=max_length,
                beam_scorer=beam_scorer,
                beam_kwargs=beam_kwargs,
                logits_process_kwargs=logits_process_kwargs,
                logits_processor=logits_processor,
                output_scores=True,
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
            )

            self.assertListEqual(output_generate.sequences.tolist(), output_beam.sequences.tolist())

            for output in (output_beam, output_generate):
                self._check_outputs(
                    output, input_ids, model.config, use_cache=True, num_return_sequences=beam_scorer.num_beams
851
852
853
854
855
                )

    def test_beam_sample_generate(self):
        for model_class in self.all_generative_model_classes:
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
856
857
858
859
860

            # It is important set set the eos_token_id to None to ensure that no sequences
            # shorter than `max_length` can be generated which could lead to flaky circle ci
            # failures if the top `num_return_sequences` beams are all shorter than the longest beam
            config.eos_token_id = None
861
            config.forced_eos_token_id = None
862

863
864
            logits_warper_kwargs, logits_warper = self._get_warper_and_kwargs(num_beams=1)

865
            model = model_class(config).to(torch_device).eval()
866
867
868
869
870
871
872
873
874
875

            # check `generate()` and `beam_search()` are equal
            # change `num_return_sequences = 2` but not for `beam_scorer`
            num_return_sequences = 2
            if model.config.is_encoder_decoder:
                max_length = 4
            beam_kwargs, beam_scorer = self._get_beam_scorer_and_kwargs(
                input_ids.shape[0] * num_return_sequences, max_length
            )
            beam_kwargs["num_return_sequences"] = num_return_sequences
876
877
878
879

            output_generate, output_beam_sample = self._beam_sample_generate(
                model=model,
                input_ids=input_ids,
880
881
                attention_mask=attention_mask,
                max_length=max_length,
882
883
884
885
886
                num_return_sequences=num_return_sequences,
                beam_scorer=beam_scorer,
                beam_kwargs=beam_kwargs,
                logits_warper=logits_warper,
                logits_warper_kwargs=logits_warper_kwargs,
887
            )
888
889
890
891
892
            self.assertListEqual(output_generate.tolist(), output_beam_sample.tolist())

    def test_beam_sample_generate_dict_output(self):
        for model_class in self.all_generative_model_classes:
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
893
894

            # disable cache
895
            config.use_cache = False
896
897
898
899
900

            # It is important set set the eos_token_id to None to ensure that no sequences
            # shorter than `max_length` can be generated which could lead to flaky circle ci
            # failures if the top `num_return_sequences` beams are all shorter than the longest beam
            config.eos_token_id = None
901
            config.forced_eos_token_id = None
902

903
904
905
906
            model = model_class(config).to(torch_device).eval()
            logits_warper_kwargs, logits_warper = self._get_warper_and_kwargs(num_beams=1)

            num_return_sequences = 2
907
            if model.config.is_encoder_decoder:
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
                max_length = 4
            beam_kwargs, beam_scorer = self._get_beam_scorer_and_kwargs(
                input_ids.shape[0] * num_return_sequences, max_length
            )
            beam_kwargs["num_return_sequences"] = num_return_sequences

            output_beam_sample, output_generate = self._beam_sample_generate(
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                max_length=max_length,
                num_return_sequences=num_return_sequences,
                beam_scorer=beam_scorer,
                beam_kwargs=beam_kwargs,
                logits_warper=logits_warper,
                logits_warper_kwargs=logits_warper_kwargs,
                output_scores=True,
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
            )

            if model.config.is_encoder_decoder:
931
932
                self.assertIsInstance(output_beam_sample, BeamSampleEncoderDecoderOutput)
                self.assertIsInstance(output_generate, BeamSampleEncoderDecoderOutput)
933
            else:
934
935
                self.assertIsInstance(output_beam_sample, BeamSampleDecoderOnlyOutput)
                self.assertIsInstance(output_generate, BeamSampleDecoderOnlyOutput)
936
937
938
939
940
941
942
943
944
945
946

            self.assertListEqual(output_generate.sequences.tolist(), output_beam_sample.sequences.tolist())
            self.assertTrue(
                torch.allclose(output_generate["sequences_scores"], output_beam_sample["sequences_scores"], atol=1e-3)
            )
            self.assertTrue(output_generate["sequences_scores"].shape == (output_generate["sequences"].shape[0],))
            self.assertTrue((output_generate["sequences_scores"] < 0).all().item())

            for output in (output_beam_sample, output_generate):
                self._check_outputs(
                    output, input_ids, model.config, num_return_sequences=num_return_sequences * beam_scorer.num_beams
947
948
                )

949
950
    def test_generate_without_input_ids(self):
        config, _, _, max_length = self._get_input_ids_and_config()
951

952
953
954
        # if no bos token id => cannot generate from None
        if config.bos_token_id is None:
            return
955

956
957
958
        for model_class in self.all_generative_model_classes:
            model = model_class(config).to(torch_device)
            model.eval()
959

960
961
962
            output_ids_generate = model.generate(
                do_sample=False,
                max_length=max_length,
963
                remove_invalid_values=True,
964
            )
965

966
            self.assertIsNotNone(output_ids_generate)
967

968
969
970
971
    def test_group_beam_search_generate(self):
        for model_class in self.all_generative_model_classes:
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()

972
973
974
975
            # It is important set set the eos_token_id to None to ensure that no sequences
            # shorter than `max_length` can be generated which could lead to flaky circle ci
            # failures if the top `num_return_sequences` beams are all shorter than the longest beam
            config.eos_token_id = None
976
977
978
979
980
            config.forced_eos_token_id = None

            model = model_class(config).to(torch_device).eval()
            if model.config.is_encoder_decoder:
                max_length = 4
981

982
            logits_process_kwargs, logits_processor = self._get_logits_processor_and_kwargs(
983
984
985
986
987
988
                input_ids.shape[-1],
                config.eos_token_id,
                config.forced_bos_token_id,
                config.forced_eos_token_id,
                max_length,
                diversity_penalty=2.0,
989
990
991
992
            )

            # check `generate()` and `group_beam_search()` are equal
            beam_kwargs, beam_scorer = self._get_diverse_beam_scorer_and_kwargs(input_ids.shape[0], max_length)
993
994
995
            output_generate, output_group_beam_search = self._group_beam_search_generate(
                model=model,
                input_ids=input_ids,
996
997
                attention_mask=attention_mask,
                max_length=max_length,
998
999
1000
1001
                beam_scorer=beam_scorer,
                beam_kwargs=beam_kwargs,
                logits_processor=logits_processor,
                logits_process_kwargs=logits_process_kwargs,
1002
            )
1003
            self.assertListEqual(output_generate.tolist(), output_group_beam_search.tolist())
1004
1005
1006
1007
1008
1009
1010
1011

            # check `generate()` and `group_beam_search()` are equal for `num_return_sequences`
            num_return_sequences = 2
            if model.config.is_encoder_decoder:
                max_length = 4
            beam_kwargs, beam_scorer = self._get_diverse_beam_scorer_and_kwargs(
                input_ids.shape[0], max_length, num_return_sequences=num_return_sequences
            )
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
            output_generate, output_group_beam_search = self._group_beam_search_generate(
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                max_length=max_length,
                beam_scorer=beam_scorer,
                beam_kwargs=beam_kwargs,
                logits_processor=logits_processor,
                logits_process_kwargs=logits_process_kwargs,
            )
            self.assertListEqual(output_generate.tolist(), output_group_beam_search.tolist())
1023

1024
1025
1026
1027
    def test_group_beam_search_generate_dict_output(self):
        for model_class in self.all_generative_model_classes:
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
            config.use_cache = False
1028
1029
1030
1031
1032

            # It is important set set the eos_token_id to None to ensure that no sequences
            # shorter than `max_length` can be generated which could lead to flaky circle ci
            # failures if the top `num_return_sequences` beams are all shorter than the longest beam
            config.eos_token_id = None
1033
            config.forced_eos_token_id = None
1034

1035
            model = model_class(config).to(torch_device).eval()
1036
1037
            if model.config.is_encoder_decoder:
                max_length = 4
1038
1039

            logits_process_kwargs, logits_processor = self._get_logits_processor_and_kwargs(
1040
1041
1042
1043
1044
1045
                input_ids.shape[-1],
                config.eos_token_id,
                config.forced_bos_token_id,
                config.forced_eos_token_id,
                max_length,
                diversity_penalty=2.0,
1046
1047
1048
1049
1050
1051
1052
1053
1054
            )

            num_return_sequences = 1
            beam_kwargs, beam_scorer = self._get_diverse_beam_scorer_and_kwargs(
                input_ids.shape[0], max_length, num_return_sequences=num_return_sequences
            )
            output_generate, output_group_beam_search = self._group_beam_search_generate(
                model=model,
                input_ids=input_ids,
1055
1056
                attention_mask=attention_mask,
                max_length=max_length,
1057
1058
1059
1060
1061
1062
1063
1064
                beam_scorer=beam_scorer,
                beam_kwargs=beam_kwargs,
                logits_processor=logits_processor,
                logits_process_kwargs=logits_process_kwargs,
                output_scores=True,
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
1065
1066
            )
            if model.config.is_encoder_decoder:
1067
1068
                self.assertIsInstance(output_group_beam_search, BeamSearchEncoderDecoderOutput)
                self.assertIsInstance(output_generate, BeamSearchEncoderDecoderOutput)
1069
            else:
1070
1071
1072
1073
1074
1075
1076
                self.assertIsInstance(output_group_beam_search, BeamSearchDecoderOnlyOutput)
                self.assertIsInstance(output_generate, BeamSearchDecoderOnlyOutput)

            self.assertListEqual(output_generate.sequences.tolist(), output_group_beam_search.sequences.tolist())
            self.assertTrue(
                torch.allclose(
                    output_generate["sequences_scores"], output_group_beam_search["sequences_scores"], atol=1e-3
1077
                )
1078
1079
1080
1081
1082
1083
1084
1085
1086
            )
            self.assertTrue(output_generate["sequences_scores"].shape == (output_generate["sequences"].shape[0],))
            self.assertTrue((output_generate["sequences_scores"] < 0).all().item())

            for output in (output_group_beam_search, output_generate):
                self._check_outputs(
                    output, input_ids, model.config, num_return_sequences=num_return_sequences * beam_scorer.num_beams
                )

1087
1088
1089
1090
1091
    def test_generate_with_head_masking(self):
        """Test designed for encoder-decoder models to ensure the attention head masking is used."""
        attention_names = ["encoder_attentions", "decoder_attentions", "cross_attentions"]
        for model_class in self.all_generative_model_classes:
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
1092
            model = model_class(config).to(torch_device)
1093
1094
1095
1096
1097
            # We want to test only encoder-decoder models
            if not config.is_encoder_decoder:
                continue

            head_masking = {
1098
1099
1100
1101
1102
1103
1104
                "head_mask": torch.zeros(config.encoder_layers, config.encoder_attention_heads, device=torch_device),
                "decoder_head_mask": torch.zeros(
                    config.decoder_layers, config.decoder_attention_heads, device=torch_device
                ),
                "cross_attn_head_mask": torch.zeros(
                    config.decoder_layers, config.decoder_attention_heads, device=torch_device
                ),
1105
1106
1107
1108
            }

            signature = inspect.signature(model.forward)
            # We want to test only models where encoder/decoder head masking is implemented
1109
            if not set(head_masking.keys()) < set([*signature.parameters.keys()]):
1110
1111
1112
1113
1114
                continue

            for attn_name, (name, mask) in zip(attention_names, head_masking.items()):
                out = model.generate(
                    input_ids,
1115
                    attention_mask=attention_mask,
1116
1117
1118
                    num_beams=1,
                    output_attentions=True,
                    return_dict_in_generate=True,
1119
                    remove_invalid_values=True,
1120
1121
1122
1123
1124
1125
                    **{name: mask},
                )
                # We check the state of decoder_attentions and cross_attentions just from the last step
                attn_weights = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1]
                self.assertEqual(sum([w.sum().item() for w in attn_weights]), 0.0)

1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
    def _check_outputs(self, output, input_ids, config, use_cache=False, num_return_sequences=1):
        batch_size, seq_length = input_ids.shape
        num_sequences_in_output = batch_size * num_return_sequences
        gen_len = (
            output.sequences.shape[-1] - 1 if config.is_encoder_decoder else output.sequences.shape[-1] - seq_length
        )

        # scores
        self._check_scores(num_sequences_in_output, output.scores, length=gen_len, config=config)

        # Attentions
        if config.is_encoder_decoder:
            # encoder
1139
            self._check_encoder_attention_for_generate(output.encoder_attentions, batch_size, config, seq_length)
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
            # decoder
            self._check_attentions_for_generate(
                num_sequences_in_output,
                output.decoder_attentions,
                min_length=1,
                max_length=output.sequences.shape[-1],
                config=config,
                use_cache=use_cache,
            )
        else:
            # if use_cache first input is equal to no use_cache, so skip here
            attentions = output.attentions if not use_cache else output.attentions[1:]
            min_length = seq_length if not use_cache else seq_length + 1
            self._check_attentions_for_generate(
                num_sequences_in_output,
                attentions=attentions,
                min_length=min_length,
                max_length=output.sequences.shape[-1],
                config=config,
                use_cache=use_cache,
            )

        # Hidden States
        if config.is_encoder_decoder:
            # encoder
1165
1166
            self._check_encoder_hidden_states_for_generate(
                output.encoder_hidden_states, batch_size, config, seq_length
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
            )

            # decoder
            self._check_hidden_states_for_generate(
                num_sequences_in_output,
                output.decoder_hidden_states,
                min_length=1,
                max_length=output.sequences.shape[-1],
                config=config,
                use_cache=use_cache,
            )
        else:
            # if use_cache first input is equal to no use_cache, so skip here
            hidden_states = output.hidden_states if not use_cache else output.hidden_states[1:]
            min_length = seq_length if not use_cache else seq_length + 1
            self._check_hidden_states_for_generate(
                num_sequences_in_output,
                hidden_states,
                min_length=min_length,
                max_length=output.sequences.shape[-1],
                config=config,
                use_cache=use_cache,
            )

    def _check_scores(self, batch_size, scores, length, config):
        expected_shape = (batch_size, config.vocab_size)
        self.assertIsInstance(scores, tuple)
        self.assertEqual(len(scores), length)
        self.assertListEqual([iter_scores.shape for iter_scores in scores], [expected_shape] * len(scores))

    def _check_attentions_for_generate(
        self, batch_size, attentions, min_length, max_length, config, use_cache=False, num_beam_groups=1
    ):
        self.assertIsInstance(attentions, tuple)
        self.assertListEqual(
            [isinstance(iter_attentions, tuple) for iter_attentions in attentions], [True] * len(attentions)
        )
        self.assertEqual(len(attentions), (max_length - min_length) * num_beam_groups)

        for idx, iter_attentions in enumerate(attentions):
            tgt_len = min_length + idx if not use_cache else 1
            src_len = min_length + idx

            expected_shape = (
                batch_size * num_beam_groups,
                config.num_attention_heads,
                tgt_len,
                src_len,
            )
            # check attn size
            self.assertListEqual(
                [layer_attention.shape for layer_attention in iter_attentions], [expected_shape] * len(iter_attentions)
            )

1221
1222
1223
1224
1225
1226
1227
1228
    def _check_encoder_attention_for_generate(self, attentions, batch_size, config, seq_length):
        encoder_expected_shape = (batch_size, config.num_attention_heads, seq_length, seq_length)
        self.assertIsInstance(attentions, tuple)
        self.assertListEqual(
            [layer_attentions.shape for layer_attentions in attentions],
            [encoder_expected_shape] * len(attentions),
        )

1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
    def _check_hidden_states_for_generate(
        self, batch_size, hidden_states, min_length, max_length, config, use_cache=False, num_beam_groups=1
    ):
        self.assertIsInstance(hidden_states, tuple)
        self.assertListEqual(
            [isinstance(iter_hidden_states, tuple) for iter_hidden_states in hidden_states],
            [True] * len(hidden_states),
        )
        self.assertEqual(len(hidden_states), (max_length - min_length) * num_beam_groups)

        for idx, iter_hidden_states in enumerate(hidden_states):
            seq_len = min_length + idx if not use_cache else 1
            expected_shape = (batch_size * num_beam_groups, seq_len, config.hidden_size)
            # check hidden size
            self.assertListEqual(
                [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states],
                [expected_shape] * len(iter_hidden_states),
            )
1247

1248
1249
1250
1251
1252
1253
1254
1255
    def _check_encoder_hidden_states_for_generate(self, hidden_states, batch_size, config, seq_length):
        encoder_expected_shape = (batch_size, seq_length, config.hidden_size)
        self.assertIsInstance(hidden_states, tuple)
        self.assertListEqual(
            [layer_hidden_states.shape for layer_hidden_states in hidden_states],
            [encoder_expected_shape] * len(hidden_states),
        )

1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359

@require_torch
class UtilsFunctionsTest(unittest.TestCase):

    # tests whether the top_k_top_p function behaves as expected
    def test_top_k_top_p_filtering(self):
        logits = torch.tensor(
            [
                [
                    8.2220991,  # 3rd highest value; idx. 0
                    -0.5620044,
                    5.23229752,
                    4.0386393,
                    -6.8798378,
                    -0.54785802,
                    -3.2012153,
                    2.92777176,
                    1.88171953,
                    7.35341276,
                    8.43207833,  # 2nd highest value; idx. 10
                    -9.85711836,
                    -5.96209236,
                    -1.13039161,
                    -7.1115294,
                    -0.8369633,
                    -5.3186408,
                    7.06427407,
                    0.81369344,
                    -0.82023817,
                    -5.9179796,
                    0.58813443,
                    -6.99778438,
                    4.71551189,
                    -0.18771637,
                    7.44020759,  # 4th highest value; idx. 25
                    9.38450987,  # 1st highest value; idx. 26
                    2.12662941,
                    -9.32562038,
                    2.35652522,
                ],  # cummulative prob of 4 highest values <= 0.6
                [
                    0.58425518,
                    4.53139238,
                    -5.57510464,
                    -6.28030699,
                    -7.19529503,
                    -4.02122551,
                    1.39337037,
                    -6.06707057,
                    1.59480517,
                    -9.643119,
                    0.03907799,
                    0.67231762,
                    -8.88206726,
                    6.27115922,  # 4th highest value; idx. 13
                    2.28520723,
                    4.82767506,
                    4.30421368,
                    8.8275313,  # 2nd highest value; idx. 17
                    5.44029958,
                    -4.4735794,
                    7.38579536,  # 3rd highest value; idx. 20
                    -2.91051663,
                    2.61946077,
                    -2.5674762,
                    -9.48959302,
                    -4.02922645,
                    -1.35416918,
                    9.67702323,  # 1st highest value; idx. 27
                    -5.89478553,
                    1.85370467,
                ],  # cummulative prob of 4 highest values <= 0.6
            ],
            dtype=torch.float,
            device=torch_device,
        )

        non_inf_expected_idx = torch.tensor(
            [[0, 0], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 20], [1, 27]],
            dtype=torch.long,
            device=torch_device,
        )  # expected non filtered idx as noted above

        non_inf_expected_output = torch.tensor(
            [
                8.2221,
                8.4321,
                7.4402,
                9.3845,
                6.2712,
                8.8275,
                7.3858,
                9.6770,
            ],  # expected non filtered values as noted above
            dtype=torch.float,
            device=torch_device,
        )

        output = top_k_top_p_filtering(logits, top_k=10, top_p=0.6, min_tokens_to_keep=4)
        non_inf_output = output[output != -float("inf")].to(device=torch_device)
        non_inf_idx = (output != -float("inf")).nonzero().to(device=torch_device)

        self.assertTrue(torch.allclose(non_inf_expected_output, non_inf_output, atol=1e-12))
        self.assertTrue(torch.all(torch.eq(non_inf_expected_idx, non_inf_idx)))
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375


@require_torch
class GenerationIntegrationTests(unittest.TestCase):
    @slow
    def test_diverse_beam_search(self):
        article = """Justin Timberlake and Jessica Biel, welcome to parenthood.
        The celebrity couple announced the arrival of their son, Silas Randall Timberlake, in statements to People.
        "Silas was the middle name of Timberlake's maternal grandfather Bill Bomar, who died in 2012, while Randall is the musician's own middle name, as well as his father's first," People reports.
        The couple announced the pregnancy in January, with an Instagram post. It is the first baby for both."""

        bart_tokenizer = BartTokenizer.from_pretrained("facebook/bart-large-cnn")
        bart_model = BartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn").to(torch_device)
        input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)

        outputs = bart_model.generate(
1376
1377
1378
1379
1380
1381
            input_ids,
            num_beams=4,
            num_return_sequences=2,
            num_beam_groups=4,
            diversity_penalty=2.0,
            remove_invalid_values=True,
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
        )

        generated_text = bart_tokenizer.batch_decode(outputs, skip_special_tokens=True)

        self.assertListEqual(
            generated_text,
            [
                "The couple announced the birth of their son, Silas Randall Timberlake, in a statement. Silas was the middle name of Timberlake's maternal grandfather Bill Bomar. Randall is the musician's own middle name, as well as his father's first. It is the first baby for both of them.",
                "Justin Timberlake and Jessica Biel have a son. The baby is named Silas Randall Timberlake. It is the first child for both. The couple announced the pregnancy in January. The name Silas is the middle name of Timberlake's maternal grandfather. It's also his own middle name.",
            ],
        )
1393
1394
1395

    def test_max_length_backward_compat_greedy(self):
        article = """Justin Timberlake and Jessica Biel, welcome to parenthood."""
1396
1397
1398
1399
        bart_tokenizer = BartTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
        bart_model = BartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart").to(
            torch_device
        )
1400
1401
1402
1403
1404
1405
        input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)

        max_length = 20
        input_ids = input_ids.expand(2, -1)
        model_kwargs = bart_model._prepare_encoder_decoder_kwargs_for_generation(input_ids, {})
        input_ids = bart_model._prepare_decoder_input_ids_for_generation(
1406
            input_ids.shape[0],
1407
1408
1409
1410
            decoder_start_token_id=bart_model.config.decoder_start_token_id,
            bos_token_id=bart_model.config.bos_token_id,
        )

1411
1412
1413
1414
1415
1416
1417
1418
        with self.assertWarns(UserWarning):
            bart_model.greedy_search(
                input_ids,
                max_length=max_length,
                pad_token_id=bart_model.config.pad_token_id,
                eos_token_id=bart_model.config.eos_token_id,
                **model_kwargs,
            )
1419
1420
1421

    def test_max_length_backward_compat_sample(self):
        article = """Justin Timberlake and Jessica Biel, welcome to parenthood."""
1422
1423
1424
1425
        bart_tokenizer = BartTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
        bart_model = BartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart").to(
            torch_device
        )
1426
1427
1428
1429
1430
1431
        input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)

        max_length = 20
        input_ids = input_ids.expand(2, -1)
        model_kwargs = bart_model._prepare_encoder_decoder_kwargs_for_generation(input_ids, {})
        input_ids = bart_model._prepare_decoder_input_ids_for_generation(
1432
            input_ids.shape[0],
1433
1434
1435
            decoder_start_token_id=bart_model.config.decoder_start_token_id,
            bos_token_id=bart_model.config.bos_token_id,
        )
1436
        with torch.no_grad():
1437
1438
1439
1440
1441
1442
1443
1444
            with self.assertWarns(UserWarning):
                bart_model.sample(
                    input_ids,
                    max_length=max_length,
                    pad_token_id=bart_model.config.pad_token_id,
                    eos_token_id=bart_model.config.eos_token_id,
                    **model_kwargs,
                )
1445
1446
1447

    def test_max_length_backward_compat_beam_search(self):
        article = """Justin Timberlake and Jessica Biel, welcome to parenthood."""
1448
1449
1450
1451
        bart_tokenizer = BartTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
        bart_model = BartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart").to(
            torch_device
        )
1452
1453
1454
1455
1456
1457
1458
1459
1460
        input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)

        batch_size = 1
        max_length = 20
        num_beams = 2

        input_ids = input_ids.expand(2, -1)
        model_kwargs = bart_model._prepare_encoder_decoder_kwargs_for_generation(input_ids, {})
        input_ids = bart_model._prepare_decoder_input_ids_for_generation(
1461
            input_ids.shape[0],
1462
1463
1464
1465
1466
1467
1468
1469
1470
            decoder_start_token_id=bart_model.config.decoder_start_token_id,
            bos_token_id=bart_model.config.bos_token_id,
        )

        beam_scorer = BeamSearchScorer(
            batch_size=batch_size,
            num_beams=num_beams,
            device=torch_device,
        )
1471
1472
1473
1474
        with self.assertWarns(UserWarning):
            _ = bart_model.beam_search(
                input_ids, num_beams=num_beams, max_length=max_length, beam_scorer=beam_scorer, **model_kwargs
            )
1475
1476
1477

    def test_max_length_backward_compat_group_beam_search(self):
        article = """Justin Timberlake and Jessica Biel, welcome to parenthood."""
1478
1479
1480
1481
        bart_tokenizer = BartTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
        bart_model = BartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart").to(
            torch_device
        )
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
        input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)

        batch_size = 1
        max_length = 20
        num_beams = 6
        num_beam_groups = 3
        num_return_sequences = num_beams * batch_size

        input_ids = input_ids.expand(6, -1)
        model_kwargs = bart_model._prepare_encoder_decoder_kwargs_for_generation(input_ids, {})
        input_ids = bart_model._prepare_decoder_input_ids_for_generation(
1493
            input_ids.shape[0],
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
            decoder_start_token_id=bart_model.config.decoder_start_token_id,
            bos_token_id=bart_model.config.bos_token_id,
        )

        diverse_beam_scorer = BeamSearchScorer(
            batch_size=batch_size,
            num_beams=num_beams,
            device=torch_device,
            num_beam_hyps_to_keep=num_return_sequences,
            num_beam_groups=num_beam_groups,
        )
1505
1506
1507
1508
        with self.assertWarns(UserWarning):
            bart_model.group_beam_search(
                input_ids, diverse_beam_scorer, num_beams=num_beams, max_length=max_length, **model_kwargs
            )
1509
1510
1511

    def test_max_length_warning_if_different(self):
        article = """Justin Timberlake and Jessica Biel, welcome to parenthood."""
1512
1513
1514
1515
        bart_tokenizer = BartTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
        bart_model = BartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart").to(
            torch_device
        )
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
        input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)

        batch_size = 1

        max_length = 20
        num_beams = 6
        num_beam_groups = 3
        num_return_sequences = num_beams * batch_size
        stopping_criteria_max_length = 18
        stopping_criteria = StoppingCriteriaList([MaxLengthCriteria(max_length=stopping_criteria_max_length)])

        # Greedy
        input_ids = input_ids.expand(6, -1)
        model_kwargs = bart_model._prepare_encoder_decoder_kwargs_for_generation(input_ids, {})
        input_ids = bart_model._prepare_decoder_input_ids_for_generation(
1531
            input_ids.shape[0],
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
            decoder_start_token_id=bart_model.config.decoder_start_token_id,
            bos_token_id=bart_model.config.bos_token_id,
        )

        with self.assertWarns(UserWarning):
            bart_model.greedy_search(
                input_ids,
                max_length=max_length,
                pad_token_id=bart_model.config.pad_token_id,
                stopping_criteria=stopping_criteria,
                eos_token_id=bart_model.config.eos_token_id,
                **model_kwargs,
            )

        # Sample
        with self.assertWarns(UserWarning):
1548
1549
1550
1551
1552
1553
1554
1555
1556
            with torch.no_grad():
                bart_model.sample(
                    input_ids,
                    max_length=max_length,
                    stopping_criteria=stopping_criteria,
                    pad_token_id=bart_model.config.pad_token_id,
                    eos_token_id=bart_model.config.eos_token_id,
                    **model_kwargs,
                )
1557
1558
1559
1560
1561
1562
1563
1564

        # Beam
        beam_scorer = BeamSearchScorer(
            batch_size=batch_size,
            num_beams=num_beams,
            device=torch_device,
        )
        with self.assertWarns(UserWarning):
1565
1566
1567
1568
1569
1570
1571
1572
1573
            with torch.no_grad():
                bart_model.beam_search(
                    input_ids,
                    num_beams=num_beams,
                    stopping_criteria=stopping_criteria,
                    max_length=max_length,
                    beam_scorer=beam_scorer,
                    **model_kwargs,
                )
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591

        # Grouped beam search
        diverse_beam_scorer = BeamSearchScorer(
            batch_size=batch_size,
            num_beams=num_beams,
            device=torch_device,
            num_beam_hyps_to_keep=num_return_sequences,
            num_beam_groups=num_beam_groups,
        )
        with self.assertWarns(UserWarning):
            bart_model.group_beam_search(
                input_ids,
                diverse_beam_scorer,
                stopping_criteria=stopping_criteria,
                num_beams=num_beams,
                max_length=max_length,
                **model_kwargs,
            )
1592
1593
1594

    def test_beam_search_warning_if_max_length_is_passed(self):
        article = """Justin Timberlake and Jessica Biel, welcome to parenthood."""
1595
1596
1597
1598
        bart_tokenizer = BartTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
        bart_model = BartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart").to(
            torch_device
        )
1599
1600
1601
1602
1603
1604
1605
1606

        batch_size = 1
        num_beams = 3

        input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)
        input_ids = input_ids.expand(num_beams, -1)
        model_kwargs = bart_model._prepare_encoder_decoder_kwargs_for_generation(input_ids, {})

1607
1608
1609
        # pretend decoder_input_ids correspond to first encoder input id
        decoder_input_ids = input_ids[:, :1]

1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
        stopping_criteria_max_length = 18
        stopping_criteria = StoppingCriteriaList([MaxLengthCriteria(max_length=stopping_criteria_max_length)])

        with self.assertWarns(UserWarning):
            beam_scorer = BeamSearchScorer(
                batch_size=batch_size,
                num_beams=num_beams,
                device=torch_device,
                max_length=10,
            )

        generated_ids = bart_model.beam_search(
1622
            decoder_input_ids,
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
            num_beams=num_beams,
            stopping_criteria=stopping_criteria,
            beam_scorer=beam_scorer,
            **model_kwargs,
        )

        beam_scorer_no_max_len = BeamSearchScorer(
            batch_size=batch_size,
            num_beams=num_beams,
            device=torch_device,
        )

        generated_ids_no_max_len = bart_model.beam_search(
1636
            decoder_input_ids,
1637
1638
1639
1640
1641
1642
1643
1644
            num_beams=num_beams,
            stopping_criteria=stopping_criteria,
            beam_scorer=beam_scorer_no_max_len,
            **model_kwargs,
        )

        # BeamSearchScorer max_length should not influence "real" max_length
        self.assertEqual(generated_ids.tolist(), generated_ids_no_max_len.tolist())
1645

1646
    def test_max_new_tokens_encoder_decoder(self):
1647
        article = """Justin Timberlake and Jessica Biel, welcome to parenthood."""
1648
1649
1650
1651
        bart_tokenizer = BartTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
        bart_model = BartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart").to(
            torch_device
        )
1652
1653
        input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)

1654
        self.assertEqual(list(input_ids.shape), [1, 29])
1655
1656

        max_new_tokens = 3
1657
        bart_model.config.max_length = 20
1658
        bart_model.config.eos_token_id = None
1659
1660

        # Encoder decoder call
1661
1662
1663
1664
1665
1666
        outputs = bart_model.generate(input_ids, max_new_tokens=max_new_tokens)
        # 1 BOS + 3 new tokens
        self.assertEqual(list(outputs.shape), [1, 4])

        # Decoder only call
        outputs = bart_model.generate(decoder_input_ids=input_ids, max_new_tokens=max_new_tokens)
1667
1668
        # 29 + 3 new tokens
        self.assertEqual(list(outputs.shape), [1, 32])
1669

1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
        # Encoder decoder call > 20
        outputs = bart_model.generate(max_new_tokens=max_new_tokens + 20)

        # 1 BOS + 20 + 3 new tokens
        self.assertEqual(list(outputs.shape), [1, 24])

        # max_new_tokens and max_length serve the same purpose and should not be used together.
        with self.assertWarns(UserWarning):
            bart_model.generate(decoder_input_ids=input_ids, max_new_tokens=10, max_length=20)

    def test_max_new_tokens_decoder_only(self):
        article = """Justin Timberlake."""
        gpt2_tokenizer = GPT2Tokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        gpt2_model = GPT2LMHeadModel.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)
        input_ids = gpt2_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)

        self.assertEqual(list(input_ids.shape), [1, 9])

        max_new_tokens = 3
        gpt2_model.config.max_length = 20

        # call < 20
        outputs = gpt2_model.generate(input_ids, max_new_tokens=max_new_tokens)

        # 9 input_ids + 3 new tokens
        self.assertEqual(list(outputs.shape), [1, 12])

        # call > 20
        outputs = gpt2_model.generate(max_new_tokens=max_new_tokens + 20)

        # 1 BOS token + 23 new tokens
        self.assertEqual(list(outputs.shape), [1, 24])

1703
1704
        # max_new_tokens and max_length serve the same purpose and should not be used together.
        with self.assertWarns(UserWarning):
1705
            gpt2_model.generate(decoder_input_ids=input_ids, max_new_tokens=10, max_length=20)
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721

    def test_encoder_decoder_generate_with_inputs_embeds(self):
        article = """Justin Timberlake and Jessica Biel, welcome to parenthood."""
        tokenizer = BartTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
        model = BartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart", max_length=5).to(
            torch_device
        )
        model.config.eos_token_id = None
        input_ids = tokenizer(article, return_tensors="pt").input_ids.to(torch_device)
        inputs_embeds = model.get_input_embeddings()(input_ids)

        output_sequences = model.generate(inputs_embeds=inputs_embeds)

        # make sure model generated correctly until `max_length`
        self.assertEqual(output_sequences.shape, (1, 5))

1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
    def test_encoder_decoder_generate_attention_mask(self):
        articles = ["Timberlake", "Jessica Biel, welcome to parenthood among other things"]
        tokenizer = BartTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
        # need extrem generation values here to force this test
        # to fail when `attention_mask` is not correctly treated in generate
        model = BartForConditionalGeneration.from_pretrained(
            "hf-internal-testing/tiny-random-bart", max_length=50, num_beams=5, num_return_sequences=5
        ).to(torch_device)

        model.config.eos_token_id = None
        input_ids = tokenizer(articles[0], return_tensors="pt").input_ids.to(torch_device)
        input_ids_batched = tokenizer(articles, padding=True, return_tensors="pt").input_ids.to(torch_device)

        output_sequences_batched = model.generate(
            input_ids=input_ids_batched, return_dict_in_generate=True, output_scores=True
        )
        output_sequences = model.generate(input_ids=input_ids, return_dict_in_generate=True, output_scores=True)

        batched_out = output_sequences_batched.sequences_scores
        out = output_sequences.sequences_scores

        diff = (batched_out[:5].sum() - out.sum()).abs()

        self.assertTrue(diff < 1e-4)

1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
    def test_decoder_generate_with_inputs_embeds(self):
        article = """I need input_ids to generate"""
        tokenizer = GPT2Tokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        model = GPT2LMHeadModel.from_pretrained("hf-internal-testing/tiny-random-gpt2", max_length=5).to(torch_device)
        input_ids = tokenizer(article, return_tensors="pt").input_ids.to(torch_device)
        inputs_embeds = model.get_input_embeddings()(input_ids)

        # cannot generate from `inputs_embeds` for decoder only
        with self.assertRaises(ValueError):
            model.generate(inputs_embeds=inputs_embeds)
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827

    def test_generate_input_ids_as_kwarg(self):
        article = """I need input_ids to generate"""
        tokenizer = GPT2Tokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        model = GPT2LMHeadModel.from_pretrained("hf-internal-testing/tiny-random-gpt2", max_length=15).to(torch_device)
        input_ids = tokenizer(article, return_tensors="pt").input_ids.to(torch_device)
        output_sequences_kwargs = model.generate(input_ids=input_ids).cpu()
        output_sequences = model.generate(input_ids).cpu()

        self.assertListEqual(output_sequences.tolist(), output_sequences_kwargs.tolist())
        self.assertEqual(output_sequences.shape, (1, 15))

    def test_generate_input_ids_as_encoder_kwarg(self):
        article = """Justin Timberlake and Jessica Biel, welcome to parenthood."""
        tokenizer = BartTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
        model = BartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart", max_length=5).to(
            torch_device
        )
        model.config.eos_token_id = None
        input_ids = tokenizer(article, return_tensors="pt").input_ids.to(torch_device)
        output_sequences_kwargs = model.generate(input_ids=input_ids).cpu()
        output_sequences = model.generate(input_ids).cpu()

        self.assertListEqual(output_sequences.tolist(), output_sequences_kwargs.tolist())
        self.assertEqual(output_sequences.shape, (1, 5))

    def test_generate_inputs_and_encoder_kwargs(self):
        article = """I need input_ids to generate"""
        tokenizer = GPT2Tokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        model = GPT2LMHeadModel.from_pretrained("hf-internal-testing/tiny-random-gpt2", max_length=10).to(torch_device)
        input_ids = tokenizer(article, return_tensors="pt").input_ids.to(torch_device)
        with self.assertRaises(ValueError):
            model.generate(input_ids, input_ids=input_ids)

    def test_generate_too_many_encoder_kwargs(self):
        article = """I need input_ids to generate"""
        tokenizer = GPT2Tokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        model = GPT2LMHeadModel.from_pretrained("hf-internal-testing/tiny-random-gpt2", max_length=10).to(torch_device)
        input_ids = tokenizer(article, return_tensors="pt").input_ids.to(torch_device)
        with self.assertRaises(ValueError):
            model.generate(input_ids=input_ids, input_values=input_ids)

    def test_generate_input_values_as_encoder_kwarg(self):
        input_values = floats_tensor((2, 250))
        model = SpeechEncoderDecoderModel.from_pretrained("hf-internal-testing/tiny-random-speech-encoder-decoder")
        model = model.to(torch_device)
        output_sequences_kwargs = model.generate(input_values=input_values, max_length=5).cpu()
        output_sequences = model.generate(input_values, max_length=5).cpu()

        self.assertListEqual(output_sequences.tolist(), output_sequences_kwargs.tolist())
        self.assertEqual(output_sequences.shape, (2, 5))

    def test_generate_input_features_as_encoder_kwarg(self):
        input_features = floats_tensor((3, 20, 24))
        model = Speech2TextForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-speech_to_text")
        model = model.to(torch_device)
        output_sequences_kwargs = model.generate(input_features=input_features, max_length=5).cpu()
        output_sequences = model.generate(input_features, max_length=5).cpu()

        self.assertListEqual(output_sequences.tolist(), output_sequences_kwargs.tolist())
        self.assertEqual(output_sequences.shape, (3, 5))

    def test_generate_pixel_values_as_encoder_kwarg(self):
        pixel_values = floats_tensor((2, 3, 30, 30))
        model = VisionEncoderDecoderModel.from_pretrained("hf-internal-testing/tiny-random-vision-encoder-decoder")
        model = model.to(torch_device)
        output_sequences_kwargs = model.generate(pixel_values=pixel_values, max_length=5).cpu()
        output_sequences = model.generate(pixel_values, max_length=5).cpu()

        self.assertListEqual(output_sequences.tolist(), output_sequences_kwargs.tolist())
        self.assertEqual(output_sequences.shape, (2, 5))