modeling_openai.py 9.96 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
import copy
import json
import math
import re
import collections

import numpy as np
import torch
import torch.nn as nn
from torch.nn.parameter import Parameter

from .modeling import BertLayerNorm as LayerNorm


def gelu(x):
    return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))


def swish(x):
    return x * torch.sigmoid(x)


ACT_FNS = {
    'relu': nn.ReLU,
    'swish': swish,
    'gelu': gelu
}


class Conv1D(nn.Module):
    def __init__(self, nf, rf, nx):
        super(Conv1D, self).__init__()
        self.rf = rf
        self.nf = nf
        if rf == 1:  # faster 1x1 conv
            w = torch.empty(nx, nf)
            nn.init.normal_(w, std=0.02)
            self.w = Parameter(w)
            self.b = Parameter(torch.zeros(nf))
        else:  # was used to train LM
            raise NotImplementedError

    def forward(self, x):
        if self.rf == 1:
            size_out = x.size()[:-1] + (self.nf,)
            x = torch.addmm(self.b, x.view(-1, x.size(-1)), self.w)
            x = x.view(*size_out)
        else:
            raise NotImplementedError
        return x


class Attention(nn.Module):
    def __init__(self, nx, n_ctx, cfg, scale=False):
        super(Attention, self).__init__()
        n_state = nx  # in Attention: n_state=768 (nx=n_embd)
        # [switch nx => n_state from Block to Attention to keep identical to TF implem]
        assert n_state % cfg.n_head == 0
        self.register_buffer('b', torch.tril(torch.ones(n_ctx, n_ctx)).view(1, 1, n_ctx, n_ctx))
        self.n_head = cfg.n_head
        self.split_size = n_state
        self.scale = scale
        self.c_attn = Conv1D(n_state * 3, 1, nx)
        self.c_proj = Conv1D(n_state, 1, nx)
        self.attn_dropout = nn.Dropout(cfg.attn_pdrop)
        self.resid_dropout = nn.Dropout(cfg.resid_pdrop)

    def _attn(self, q, k, v):
        w = torch.matmul(q, k)
        if self.scale:
            w = w / math.sqrt(v.size(-1))
        w = w * self.b + -1e9 * (1 - self.b)  # TF implem method: mask_attn_weights
        w = nn.Softmax(dim=-1)(w)
        w = self.attn_dropout(w)
        return torch.matmul(w, v)

    def merge_heads(self, x):
        x = x.permute(0, 2, 1, 3).contiguous()
        new_x_shape = x.size()[:-2] + (x.size(-2) * x.size(-1),)
        return x.view(*new_x_shape)  # in Tensorflow implem: fct merge_states

    def split_heads(self, x, k=False):
        new_x_shape = x.size()[:-1] + (self.n_head, x.size(-1) // self.n_head)
        x = x.view(*new_x_shape)  # in Tensorflow implem: fct split_states
        if k:
            return x.permute(0, 2, 3, 1)
        else:
            return x.permute(0, 2, 1, 3)

    def forward(self, x):
        x = self.c_attn(x)
        query, key, value = x.split(self.split_size, dim=2)
        query = self.split_heads(query)
        key = self.split_heads(key, k=True)
        value = self.split_heads(value)
        a = self._attn(query, key, value)
        a = self.merge_heads(a)
        a = self.c_proj(a)
        a = self.resid_dropout(a)
        return a


class MLP(nn.Module):
    def __init__(self, n_state, cfg):  # in MLP: n_state=3072 (4 * n_embd)
        super(MLP, self).__init__()
        nx = cfg.n_embd
        self.c_fc = Conv1D(n_state, 1, nx)
        self.c_proj = Conv1D(nx, 1, n_state)
        self.act = ACT_FNS[cfg.afn]
        self.dropout = nn.Dropout(cfg.resid_pdrop)

    def forward(self, x):
        h = self.act(self.c_fc(x))
        h2 = self.c_proj(h)
        return self.dropout(h2)


class Block(nn.Module):
    def __init__(self, n_ctx, cfg, scale=False):
        super(Block, self).__init__()
        nx = cfg.n_embd
        self.attn = Attention(nx, n_ctx, cfg, scale)
        self.ln_1 = LayerNorm(nx)
        self.mlp = MLP(4 * nx, cfg)
        self.ln_2 = LayerNorm(nx)

    def forward(self, x):
        a = self.attn(x)
        n = self.ln_1(x + a)
        m = self.mlp(n)
        h = self.ln_2(n + m)
        return h


class TransformerModel(nn.Module):
    """ Transformer model """

    def __init__(self, cfg, vocab=40990, n_ctx=512):
        super(TransformerModel, self).__init__()
        self.vocab = vocab
        self.embed = nn.Embedding(vocab, cfg.n_embd)
        self.drop = nn.Dropout(cfg.embd_pdrop)
        block = Block(n_ctx, cfg, scale=True)
        self.h = nn.ModuleList([copy.deepcopy(block) for _ in range(cfg.n_layer)])

        nn.init.normal_(self.embed.weight, std=0.02)

    def forward(self, x):
        x = x.view(-1, x.size(-2), x.size(-1))
        e = self.embed(x)
        # Add the position information to the input embeddings
        h = e.sum(dim=2)
        for block in self.h:
            h = block(h)
        return h


class LMHead(nn.Module):
    """ Language Model Head for the transformer """

    def __init__(self, model, cfg):
        super(LMHead, self).__init__()
        self.n_embd = cfg.n_embd
        embed_shape = model.embed.weight.shape
        self.decoder = nn.Linear(embed_shape[1], embed_shape[0], bias=False)
        self.decoder.weight = model.embed.weight # Tied weights

    def forward(self, h):
        # Truncated Language modeling logits (we remove the last token)
        h_trunc = h[:, :-1].contiguous().view(-1, self.n_embd)
        lm_logits = self.decoder(h_trunc)
        return lm_logits


class MultipleChoiceHead(nn.Module):
    """ Classifier Head for the transformer """

    def __init__(self, clf_token, cfg):
        super(MultipleChoiceHead, self).__init__()
        self.n_embd = cfg.n_embd
        self.clf_token = clf_token
        self.dropout = nn.Dropout2d(cfg.clf_pdrop)  # To reproduce the noise_shape parameter of TF implementation
        self.linear = nn.Linear(cfg.n_embd, 1)

        nn.init.normal_(self.linear.weight, std = 0.02)
        nn.init.normal_(self.linear.bias, 0)

    def forward(self, h, x):
        # Classification logits
        clf_h = h.view(-1, self.n_embd)
        flat = x[..., 0].contiguous().view(-1)
        clf_h = clf_h[flat == self.clf_token, :]
        clf_h = clf_h.view(-1, x.size(1), self.n_embd, 1)
        # This double transposition is there to replicate the behavior
        # of the noise_shape argument in the tensorflow
        # implementation.  For more details, see
        # https://github.com/huggingface/pytorch-openai-transformer-lm/issues/11
        clf_h = self.dropout(clf_h.transpose(1, 2)).transpose(1, 2)
        clf_h = clf_h.contiguous().view(-1, self.n_embd)
        clf_logits = self.linear(clf_h)

        return clf_logits.view(-1, x.size(1))


class ClfHead(nn.Module):
    """Classification Head for the transformer

    TODO: test this class."""
    def __init__(self, clf_token, cfg, n_class):
        super(ClfHead, self).__init__()
        self.n_embd = cfg.n_embd
        self.clf_token = clf_token
        self.dropout = nn.Dropout(cfg.clf_pdrop)
        self.linear = nn.Linear(cfg.n_embd, n_class)

        nn.init.normal_(self.linear.weight, std = 0.02)
        nn.init.normal_(self.linear.bias, 0)

    def forward(self, h, x):
        clf_h = h.view(-1, self.n_embd)
        flat = x[..., 0].contiguous().view(-1)
        clf_h = clf_h[flat == self.clf_token, :]
        clf_h = self.dropout(clf_h)
        clf_logits = self.linear(clf_h)

        return clf_logits

class SimilarityHead(nn.Module):
    """ Similarity Head for the transformer

        TODO: test this class."""
    def __init__(self, clf_token, cfg):
        super(SimilarityHead, self).__init__()
        self.n_embd = cfg.n_embd
        self.clf_token = clf_token
        self.dropout = nn.Dropout(cfg.clf_pdrop)
        self.linear = nn.Linear(cfg.n_embd, 1)

        nn.init.normal_(self.linear.weight, std = 0.02)
        nn.init.normal_(self.linear.bias, 0)

    def forward(self, h, x):
        sim_h = h.view(-1, self.n_embd)
        flat = x[..., 0].contiguous().view(-1)
        sim_h = sim_h[flat == self.clf_token, :]
        sim_h = self.dropout(sim_h)
        sim_h = sim_h.sum(dim = 1)
        sim_logits = self.linear(sim_h)

        return sim_logits

class DoubleHeadModel(nn.Module):
    """ Transformer with language model and task specific heads """
    def __init__(self, cfg, clf_token, task_head_type, vocab=40990, n_ctx=512):
        super(DoubleHeadModel, self).__init__()
        self.transformer = TransformerModel(cfg, vocab=vocab, n_ctx=n_ctx)
        self.lm_head = LMHead(self.transformer, cfg)
        if isinstance(task_head_type, str):
            if task_head_type == 'multiple_choice':
                self.task_head = MultipleChoiceHead(clf_token, cfg)
            elif task_head_type == 'similarity':
                self.task_head = SimilarityHead(clf_token, cfg)
            elif task_head_type == 'inference':
                # the three classes correspond to entailment, contradiction and neutral.
                self.task_head = ClfHead(clf_token, cfg, 3)
            else:
                raise ValueError("task_head_type is expected to be 'multiple_choice' "
                                 "'similarity', 'inference' or ('classification', n_class) "
                                 f"got {task_head_type}.")
        elif isinstance(task_head_type, collections.abc.Sequence) and len(task_head_type) == 2 and \
             task_head_type[0] == 'classification':
            n_class = task_head_type[1]
            self.task_head = ClfHead(clf_token, cfg, n_class)
        else:
            raise ValueError("task_head_type is expected to be 'multiple_choice' "
                             "'similarity', 'inference' or ('classification', n_class) "
                             f"got {task_head_type}.")

    def forward(self, x):
        h = self.transformer(x)
        lm_logits = self.lm_head(h)
        task_logits = self.task_head(h, x)

        return lm_logits, task_logits


class dotdict(dict):
    """dot.notation access to dictionary attributes"""
    __getattr__ = dict.get
    __setattr__ = dict.__setitem__
    __delattr__ = dict.__delitem__


DEFAULT_CONFIG = dotdict({
    'n_embd': 768,
    'n_head': 12,
    'n_layer': 12,
    'embd_pdrop': 0.1,
    'attn_pdrop': 0.1,
    'resid_pdrop': 0.1,
    'afn': 'gelu',
    'clf_pdrop': 0.1})