modeling_transfo_xl_test.py 9.25 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

19
import os
thomwolf's avatar
thomwolf committed
20
21
22
import unittest
import json
import random
23
24
import shutil
import pytest
thomwolf's avatar
thomwolf committed
25
26
27
28

import torch

from pytorch_pretrained_bert import (TransfoXLConfig, TransfoXLModel, TransfoXLLMHeadModel)
29
from pytorch_pretrained_bert.modeling_transfo_xl import PRETRAINED_MODEL_ARCHIVE_MAP
thomwolf's avatar
thomwolf committed
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

class TransfoXLModelTest(unittest.TestCase):
    class TransfoXLModelTester(object):

        def __init__(self,
                     parent,
                     batch_size=13,
                     seq_length=7,
                     mem_len=30,
                     clamp_len=15,
                     is_training=True,
                     use_labels=True,
                     vocab_size=99,
                     cutoffs=[10, 50, 80],
                     d_model=32,
                     d_embed=32,
                     n_head=4,
                     d_head=8,
                     d_inner=128,
                     div_val=2,
                     n_layer=5,
                     scope=None,
                     seed=1):
            self.parent = parent
            self.batch_size = batch_size
            self.seq_length = seq_length
            self.mem_len = mem_len
            self.clamp_len = clamp_len
            self.is_training = is_training
            self.use_labels = use_labels
            self.vocab_size = vocab_size
            self.cutoffs = cutoffs
            self.d_model = d_model
            self.d_embed = d_embed
            self.n_head = n_head
            self.d_head = d_head
            self.d_inner = d_inner
            self.div_val = div_val
            self.n_layer = n_layer
            self.scope = scope
            self.seed = seed

        def prepare_config_and_inputs(self):
73
74
            input_ids_1 = TransfoXLModelTest.ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
            input_ids_2 = TransfoXLModelTest.ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
thomwolf's avatar
thomwolf committed
75
76
77

            lm_labels = None
            if self.use_labels:
78
                lm_labels = TransfoXLModelTest.ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
thomwolf's avatar
thomwolf committed
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

            config = TransfoXLConfig(
                vocab_size_or_config_json_file=self.vocab_size,
                mem_len=self.mem_len,
                clamp_len=self.clamp_len,
                cutoffs=self.cutoffs,
                d_model=self.d_model,
                d_embed=self.d_embed,
                n_head=self.n_head,
                d_head=self.d_head,
                d_inner=self.d_inner,
                div_val=self.div_val,
                n_layer=self.n_layer)

            return (config, input_ids_1, input_ids_2, lm_labels)

        def set_seed(self):
            random.seed(self.seed)
            torch.manual_seed(self.seed)

        def create_transfo_xl_model(self, config, input_ids_1, input_ids_2, lm_labels):
            model = TransfoXLModel(config)
            model.eval()

            hidden_states_1, mems_1 = model(input_ids_1)
            hidden_states_2, mems_2 = model(input_ids_2, mems_1)
            outputs = {
                "hidden_states_1": hidden_states_1,
                "mems_1": mems_1,
                "hidden_states_2": hidden_states_2,
                "mems_2": mems_2,
            }
            return outputs

        def check_transfo_xl_model_output(self, result):
            self.parent.assertListEqual(
                list(result["hidden_states_1"].size()),
116
117
118
119
                [self.batch_size, self.seq_length, self.d_model])
            self.parent.assertListEqual(
                list(result["hidden_states_2"].size()),
                [self.batch_size, self.seq_length, self.d_model])
thomwolf's avatar
thomwolf committed
120
121
122
123
124
125
126
127
128
129
130
131
            self.parent.assertListEqual(
                list(list(mem.size()) for mem in result["mems_1"]),
                [[self.mem_len, self.batch_size, self.d_model]] * self.n_layer)
            self.parent.assertListEqual(
                list(list(mem.size()) for mem in result["mems_2"]),
                [[self.mem_len, self.batch_size, self.d_model]] * self.n_layer)


        def create_transfo_xl_lm_head(self, config, input_ids_1, input_ids_2, lm_labels):
            model = TransfoXLLMHeadModel(config)
            model.eval()

thomwolf's avatar
thomwolf committed
132
            loss_1, mems_1a = model(input_ids_1, labels=lm_labels)
thomwolf's avatar
thomwolf committed
133
134
            lm_logits_1, mems_1b = model(input_ids_1)

thomwolf's avatar
thomwolf committed
135
            loss_2, mems_2a = model(input_ids_2, labels=lm_labels, mems=mems_1a)
thomwolf's avatar
thomwolf committed
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
            lm_logits_2, mems_2b = model(input_ids_2, mems=mems_1b)

            outputs = {
                "loss_1": loss_1,
                "mems_1a": mems_1a,
                "lm_logits_1": lm_logits_1,
                "mems_1b": mems_1b,
                "loss_2": loss_2,
                "mems_2a": mems_2a,
                "lm_logits_2": lm_logits_2,
                "mems_2b": mems_2b,
            }
            return outputs

        def check_transfo_xl_lm_head_output(self, result):
            self.parent.assertListEqual(
                list(result["loss_1"].size()),
153
154
155
156
                [self.batch_size, self.seq_length])
            self.parent.assertListEqual(
                list(result["lm_logits_1"].size()),
                [self.batch_size, self.seq_length, self.vocab_size])
thomwolf's avatar
thomwolf committed
157
158
159
160
161
162
163
164
165
166
167
168
            self.parent.assertListEqual(
                list(list(mem.size()) for mem in result["mems_1a"]),
                [[self.mem_len, self.batch_size, self.d_model]] * self.n_layer)
            self.parent.assertListEqual(
                list(list(mem.size()) for mem in result["mems_1b"]),
                [[self.mem_len, self.batch_size, self.d_model]] * self.n_layer)
            self.parent.assertListEqual(
                list(mem[~torch.isnan(mem)].sum() for mem in result["mems_1a"]),
                list(mem[~torch.isnan(mem)].sum() for mem in result["mems_1b"]))

            self.parent.assertListEqual(
                list(result["loss_2"].size()),
169
170
171
172
                [self.batch_size, self.seq_length])
            self.parent.assertListEqual(
                list(result["lm_logits_2"].size()),
                [self.batch_size, self.seq_length, self.vocab_size])
thomwolf's avatar
thomwolf committed
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
            self.parent.assertListEqual(
                list(list(mem.size()) for mem in result["mems_2a"]),
                [[self.mem_len, self.batch_size, self.d_model]] * self.n_layer)
            self.parent.assertListEqual(
                list(list(mem.size()) for mem in result["mems_2b"]),
                [[self.mem_len, self.batch_size, self.d_model]] * self.n_layer)
            self.parent.assertListEqual(
                list(mem[~torch.isnan(mem)].sum() for mem in result["mems_2a"]),
                list(mem[~torch.isnan(mem)].sum() for mem in result["mems_2b"]))

    def test_default(self):
        self.run_tester(TransfoXLModelTest.TransfoXLModelTester(self))

    def test_config_to_json_string(self):
        config = TransfoXLConfig(vocab_size_or_config_json_file=96, d_embed=37)
        obj = json.loads(config.to_json_string())
        self.assertEqual(obj["n_token"], 96)
        self.assertEqual(obj["d_embed"], 37)

192
193
194
195
196
197
198
199
    def test_config_to_json_file(self):
        config_first = TransfoXLConfig(vocab_size_or_config_json_file=96, d_embed=37)
        json_file_path = "/tmp/config.json"
        config_first.to_json_file(json_file_path)
        config_second = TransfoXLConfig.from_json_file(json_file_path)
        os.remove(json_file_path)
        self.assertEqual(config_second.to_dict(), config_first.to_dict())

200
201
202
203
204
205
206
207
    @pytest.mark.slow
    def test_model_from_pretrained(self):
        cache_dir = "/tmp/pytorch_pretrained_bert_test/"
        for model_name in list(PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
            model = TransfoXLModel.from_pretrained(model_name, cache_dir=cache_dir)
            shutil.rmtree(cache_dir)
            self.assertIsNotNone(model)

thomwolf's avatar
thomwolf committed
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
    def run_tester(self, tester):
        config_and_inputs = tester.prepare_config_and_inputs()

        tester.set_seed()
        output_result = tester.create_transfo_xl_model(*config_and_inputs)
        tester.check_transfo_xl_model_output(output_result)

        tester.set_seed()
        output_result = tester.create_transfo_xl_lm_head(*config_and_inputs)
        tester.check_transfo_xl_lm_head_output(output_result)

    @classmethod
    def ids_tensor(cls, shape, vocab_size, rng=None, name=None):
        """Creates a random int32 tensor of the shape within the vocab size."""
        if rng is None:
            rng = random.Random()

        total_dims = 1
        for dim in shape:
            total_dims *= dim

        values = []
        for _ in range(total_dims):
            values.append(rng.randint(0, vocab_size - 1))

        return torch.tensor(data=values, dtype=torch.long).view(shape).contiguous()


if __name__ == "__main__":
    unittest.main()