run_squad.py 25.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
thomwolf's avatar
thomwolf committed
16
""" Finetuning a question-answering model (Bert, XLM, XLNet,...) on SQuAD."""
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

from __future__ import absolute_import, division, print_function

import argparse
import logging
import os
import random
from io import open

import numpy as np
import torch
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
                              TensorDataset)
from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm, trange

from tensorboardX import SummaryWriter

thomwolf's avatar
thomwolf committed
35
36
37
38
39
40
41
42
from pytorch_transformers import (WEIGHTS_NAME, BertConfig,
                                  BertForQuestionAnswering, BertTokenizer,
                                  XLMConfig, XLMForQuestionAnswering,
                                  XLMTokenizer, XLNetConfig,
                                  XLNetForQuestionAnswering,
                                  XLNetTokenizer)

from pytorch_transformers import AdamW, WarmupLinearSchedule
43
44
45

from utils_squad import read_squad_examples, convert_examples_to_features, RawResult, write_predictions

46
47
from utils_squad_evaluate import EVAL_OPTS, main as evaluate_on_squad

48
49
logger = logging.getLogger(__name__)

thomwolf's avatar
thomwolf committed
50
51
ALL_MODELS = sum((tuple(conf.pretrained_config_archive_map.keys()) \
                  for conf in (BertConfig, XLNetConfig, XLMConfig)), ())
thomwolf's avatar
thomwolf committed
52
53

MODEL_CLASSES = {
thomwolf's avatar
thomwolf committed
54
55
56
    'bert': (BertConfig, BertForQuestionAnswering, BertTokenizer),
    'xlnet': (XLNetConfig, XLNetForQuestionAnswering, XLNetTokenizer),
    'xlm': (XLMConfig, XLMForQuestionAnswering, XLMTokenizer),
thomwolf's avatar
thomwolf committed
57
58
}

thomwolf's avatar
thomwolf committed
59
60
61
62
63
64
65
def set_seed(args):
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if args.n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

thomwolf's avatar
thomwolf committed
66

67
def train(args, train_dataset, model, tokenizer):
thomwolf's avatar
thomwolf committed
68
69
70
71
    """ Train the model """
    if args.local_rank in [-1, 0]:
        tb_writer = SummaryWriter()

72
    args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
thomwolf's avatar
thomwolf committed
73
74
75
76
    train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
    train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)

    if args.max_steps > 0:
77
        t_total = args.max_steps
thomwolf's avatar
thomwolf committed
78
79
        args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
    else:
80
        t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
thomwolf's avatar
thomwolf committed
81

82
    # Prepare optimizer and schedule (linear warmup and decay)
thomwolf's avatar
thomwolf committed
83
84
    no_decay = ['bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [
85
        {'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay},
thomwolf's avatar
thomwolf committed
86
87
        {'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
        ]
88
89
    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
    scheduler = WarmupLinearSchedule(optimizer, warmup_steps=args.warmup_steps, t_total=t_total)
thomwolf's avatar
thomwolf committed
90
91
92
93
94
95
96
97
98
99
100
    if args.fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
        model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)

    # Train!
    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
101
102
103
    logger.info("  Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
    logger.info("  Total train batch size (w. parallel, distributed & accumulation) = %d",
                   args.train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1))
thomwolf's avatar
thomwolf committed
104
    logger.info("  Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
105
    logger.info("  Total optimization steps = %d", t_total)
thomwolf's avatar
thomwolf committed
106
107
108

    global_step = 0
    tr_loss, logging_loss = 0.0, 0.0
109
110
111
112
113
114
115
    model.zero_grad()
    train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0])
    set_seed(args)  # Added here for reproductibility (even between python 2 and 3)
    for _ in train_iterator:
        epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
        for step, batch in enumerate(epoch_iterator):
            model.train()
thomwolf's avatar
thomwolf committed
116
            batch = tuple(t.to(args.device) for t in batch)
117
118
119
120
121
            inputs = {'input_ids':       batch[0],
                      'token_type_ids':  batch[1] if args.model_type in ['bert', 'xlnet'] else None,  # XLM don't use segment_ids
                      'attention_mask':  batch[2],
                      'start_positions': batch[3],
                      'end_positions':   batch[4]}
thomwolf's avatar
thomwolf committed
122
            ouputs = model(**inputs)
123
            loss = ouputs[0]  # model outputs are always tuple in pytorch-transformers (see doc)
thomwolf's avatar
thomwolf committed
124

125
126
127
128
            if args.n_gpu > 1:
                loss = loss.mean() # mean() to average on multi-gpu parallel training
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps
thomwolf's avatar
thomwolf committed
129

130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
                torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
            else:
                loss.backward()
                torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)

            tr_loss += loss.item()
            if (step + 1) % args.gradient_accumulation_steps == 0:
                scheduler.step()  # Update learning rate schedule
                optimizer.step()
                model.zero_grad()
                global_step += 1

                if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
                    # Log metrics
                    if args.local_rank == -1 and args.evaluate_during_training:  # Only evaluate when single GPU otherwise metrics may not average well
                        results = evaluate(args, model, tokenizer)
                        for key, value in results.items():
                            tb_writer.add_scalar('eval_{}'.format(key), value, global_step)
                    tb_writer.add_scalar('lr', scheduler.get_lr()[0], global_step)
                    tb_writer.add_scalar('loss', (tr_loss - logging_loss)/args.logging_steps, global_step)
                    logging_loss = tr_loss

                if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
                    # Save model checkpoint
                    output_dir = os.path.join(args.output_dir, 'checkpoint-{}'.format(global_step))
                    if not os.path.exists(output_dir):
                        os.makedirs(output_dir)
                    model_to_save = model.module if hasattr(model, 'module') else model  # Take care of distributed/parallel training
                    model_to_save.save_pretrained(output_dir)
                    torch.save(args, os.path.join(output_dir, 'training_args.bin'))
                    logger.info("Saving model checkpoint to %s", output_dir)

            if args.max_steps > 0 and global_step > args.max_steps:
                epoch_iterator.close()
                break
        if args.max_steps > 0 and global_step > args.max_steps:
            train_iterator.close()
            break

    return global_step, tr_loss / global_step


def evaluate(args, model, tokenizer, prefix=""):
    dataset, examples, features = load_and_cache_examples(args, tokenizer, evaluate=True, output_examples=True)

    if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
        os.makedirs(args.output_dir)

    args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
    # Note that DistributedSampler samples randomly
    eval_sampler = SequentialSampler(dataset) if args.local_rank == -1 else DistributedSampler(dataset)
    eval_dataloader = DataLoader(dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)

    # Eval!
    logger.info("***** Running evaluation {} *****".format(prefix))
    logger.info("  Num examples = %d", len(dataset))
    logger.info("  Batch size = %d", args.eval_batch_size)
    all_results = []
    for batch in tqdm(eval_dataloader, desc="Evaluating"):
        model.eval()
        batch = tuple(t.to(args.device) for t in batch)
        example_indices = batch[3]
        with torch.no_grad():
            inputs = {'input_ids':      batch[0],
                        'token_type_ids': batch[1] if args.model_type in ['bert', 'xlnet'] else None,  # XLM don't use segment_ids
                        'attention_mask': batch[2]}
            outputs = model(**inputs)
            batch_start_logits, batch_end_logits = outputs[:2]

        for i, example_index in enumerate(example_indices):
            start_logits = batch_start_logits[i].detach().cpu().tolist()
            end_logits = batch_end_logits[i].detach().cpu().tolist()
            eval_feature = features[example_index.item()]
            unique_id = int(eval_feature.unique_id)
            all_results.append(RawResult(unique_id=unique_id,
                                         start_logits=start_logits,
                                         end_logits=end_logits))

    output_prediction_file = os.path.join(args.output_dir, "predictions_{}.json".format(prefix))
    output_nbest_file = os.path.join(args.output_dir, "nbest_predictions_{}.json".format(prefix))
    output_null_log_odds_file = os.path.join(args.output_dir, "null_odds_{}.json".format(prefix))
    all_predictions = write_predictions(examples, features, all_results,
                                        args.n_best_size, args.max_answer_length,
                                        args.do_lower_case, output_prediction_file,
                                        output_nbest_file, output_null_log_odds_file,
                                        args.verbose_logging, args.version_2_with_negative,
                                        args.null_score_diff_threshold)

    evaluate_options = EVAL_OPTS(data_file=args.predict_file,
                                 pred_file=output_prediction_file,
                                 na_prob_file=output_null_log_odds_file)
    results = evaluate_on_squad(evaluate_options)
    return results


def load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False):
    # Load data features from cache or dataset file
    input_file = args.predict_file if evaluate else args.train_file
    cached_features_file = os.path.join(os.path.dirname(input_file), 'cached_{}_{}_{}'.format(
thomwolf's avatar
thomwolf committed
232
233
        'dev' if evaluate else 'train',
        list(filter(None, args.model_name.split('/'))).pop(),
234
235
        str(args.max_seq_length)))
    if os.path.exists(cached_features_file) and not args.overwrite_cache and not output_examples:
thomwolf's avatar
thomwolf committed
236
237
238
        logger.info("Loading features from cached file %s", cached_features_file)
        features = torch.load(cached_features_file)
    else:
239
240
241
242
243
244
245
246
247
248
        logger.info("Creating features from dataset file at %s", input_file)
        examples = read_squad_examples(input_file=input_file,
                                       is_training=not evaluate,
                                       version_2_with_negative=args.version_2_with_negative)
        features = convert_examples_to_features(examples=examples,
                                                tokenizer=tokenizer,
                                                max_seq_length=args.max_seq_length,
                                                doc_stride=args.doc_stride,
                                                max_query_length=args.max_query_length,
                                                is_training=not evaluate)
thomwolf's avatar
thomwolf committed
249
250
251
252
253
        if args.local_rank in [-1, 0]:
            logger.info("Saving features into cached file %s", cached_features_file)
            torch.save(features, cached_features_file)

    # Convert to Tensors and build dataset
254
255
256
257
    all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
    all_input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long)
    all_segment_ids = torch.tensor([f.segment_ids for f in features], dtype=torch.long)
    if evaluate:
thomwolf's avatar
thomwolf committed
258
259
        all_example_index = torch.arange(all_input_ids.size(0), dtype=torch.long)
        dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_example_index)
260
261
262
263
    else:
        all_start_positions = torch.tensor([f.start_position for f in features], dtype=torch.long)
        all_end_positions = torch.tensor([f.end_position for f in features], dtype=torch.long)
        dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_start_positions, all_end_positions)
thomwolf's avatar
thomwolf committed
264

265
266
    if output_examples:
        return dataset, examples, features
thomwolf's avatar
thomwolf committed
267
268
    return dataset

269
270
271
272
273

def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
thomwolf's avatar
thomwolf committed
274
275
276
277
278
279
    parser.add_argument("--train_file", default=None, type=str, required=True,
                        help="SQuAD json for training. E.g., train-v1.1.json")
    parser.add_argument("--predict_file", default=None, type=str, required=True,
                        help="SQuAD json for predictions. E.g., dev-v1.1.json or test-v1.1.json")
    parser.add_argument("--model_name", default=None, type=str, required=True,
                        help="Bert/XLNet/XLM pre-trained model selected in the list: " + ", ".join(ALL_MODELS))
280
281
282
283
    parser.add_argument("--output_dir", default=None, type=str, required=True,
                        help="The output directory where the model checkpoints and predictions will be written.")

    ## Other parameters
284
285
286
287
288
289
290
    parser.add_argument("--config_name", default="", type=str,
                        help="Pretrained config name or path if not the same as model_name")
    parser.add_argument("--tokenizer_name", default="", type=str,
                        help="Pretrained tokenizer name or path if not the same as model_name")
    parser.add_argument("--cache_dir", default="", type=str,
                        help="Where do you want to store the pre-trained models downloaded from s3")

thomwolf's avatar
thomwolf committed
291
292
293
294
295
    parser.add_argument('--version_2_with_negative', action='store_true',
                        help='If true, the SQuAD examples contain some that do not have an answer.')
    parser.add_argument('--null_score_diff_threshold', type=float, default=0.0,
                        help="If null_score - best_non_null is greater than the threshold predict null.")

296
297
298
299
300
301
302
303
    parser.add_argument("--max_seq_length", default=384, type=int,
                        help="The maximum total input sequence length after WordPiece tokenization. Sequences "
                             "longer than this will be truncated, and sequences shorter than this will be padded.")
    parser.add_argument("--doc_stride", default=128, type=int,
                        help="When splitting up a long document into chunks, how much stride to take between chunks.")
    parser.add_argument("--max_query_length", default=64, type=int,
                        help="The maximum number of tokens for the question. Questions longer than this will "
                             "be truncated to this length.")
thomwolf's avatar
thomwolf committed
304
305
    parser.add_argument("--do_train", action='store_true',
                        help="Whether to run training.")
306
    parser.add_argument("--do_eval", action='store_true',
thomwolf's avatar
thomwolf committed
307
                        help="Whether to run eval on the dev set.")
308
309
    parser.add_argument("--evaluate_during_training", action='store_true',
                        help="Rul evaluation during training at each logging step.")
thomwolf's avatar
thomwolf committed
310
    parser.add_argument("--do_lower_case", action='store_true',
311
                        help="Set this flag if you are using an uncased model.")
thomwolf's avatar
thomwolf committed
312

313
314
315
316
    parser.add_argument("--per_gpu_train_batch_size", default=8, type=int,
                        help="Batch size per GPU/CPU for training.")
    parser.add_argument("--per_gpu_eval_batch_size", default=8, type=int,
                        help="Batch size per GPU/CPU for evaluation.")
thomwolf's avatar
thomwolf committed
317
318
319
320
    parser.add_argument("--learning_rate", default=5e-5, type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
                        help="Number of updates steps to accumulate before performing a backward/update pass.")
321
322
323
324
325
326
    parser.add_argument("--weight_decay", default=0.0, type=float,
                        help="Weight deay if we apply some.")
    parser.add_argument("--adam_epsilon", default=1e-8, type=float,
                        help="Epsilon for Adam optimizer.")
    parser.add_argument("--max_grad_norm", default=1.0, type=float,
                        help="Max gradient norm.")
327
328
    parser.add_argument("--num_train_epochs", default=3.0, type=float,
                        help="Total number of training epochs to perform.")
329
330
331
332
    parser.add_argument("--max_steps", default=-1, type=int,
                        help="If > 0: set total number of training steps to perform. Override num_train_epochs.")
    parser.add_argument("--warmup_steps", default=0, type=int,
                        help="Linear warmup over warmup_steps.")
333
    parser.add_argument("--n_best_size", default=20, type=int,
thomwolf's avatar
thomwolf committed
334
                        help="The total number of n-best predictions to generate in the nbest_predictions.json output file.")
335
336
337
338
339
340
    parser.add_argument("--max_answer_length", default=30, type=int,
                        help="The maximum length of an answer that can be generated. This is needed because the start "
                             "and end predictions are not conditioned on one another.")
    parser.add_argument("--verbose_logging", action='store_true',
                        help="If true, all of the warnings related to data processing will be printed. "
                             "A number of warnings are expected for a normal SQuAD evaluation.")
thomwolf's avatar
thomwolf committed
341

342
343
344
345
346
347
    parser.add_argument('--logging_steps', type=int, default=50,
                        help="Log every X updates steps.")
    parser.add_argument('--save_steps', type=int, default=50,
                        help="Save checkpoint every X updates steps.")
    parser.add_argument("--eval_all_checkpoints", action='store_true',
                        help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number")
thomwolf's avatar
thomwolf committed
348
    parser.add_argument("--no_cuda", action='store_true',
349
                        help="Whether not to use CUDA when available")
350
351
352
353
    parser.add_argument('--overwrite_output_dir', action='store_true',
                        help="Overwrite the content of the output directory")
    parser.add_argument('--overwrite_cache', action='store_true',
                        help="Overwrite the cached training and evaluation sets")
thomwolf's avatar
thomwolf committed
354
    parser.add_argument('--seed', type=int, default=42,
355
                        help="random seed for initialization")
356

thomwolf's avatar
thomwolf committed
357
    parser.add_argument("--local_rank", type=int, default=-1,
358
                        help="local_rank for distributed training on gpus")
thomwolf's avatar
thomwolf committed
359
360
361
362
363
    parser.add_argument('--fp16', action='store_true',
                        help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit")
    parser.add_argument('--fp16_opt_level', type=str, default='O1',
                        help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
                             "See details at https://nvidia.github.io/apex/amp.html")
364
365
366
367
    parser.add_argument('--server_ip', type=str, default='', help="Can be used for distant debugging.")
    parser.add_argument('--server_port', type=str, default='', help="Can be used for distant debugging.")
    args = parser.parse_args()

thomwolf's avatar
thomwolf committed
368
369
370
    if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir:
        raise ValueError("Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(args.output_dir))

371
    # Setup distant debugging if needed
372
373
374
375
376
377
378
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()

thomwolf's avatar
thomwolf committed
379
    # Setup CUDA, GPU & distributed training
380
381
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
thomwolf's avatar
thomwolf committed
382
383
        args.n_gpu = torch.cuda.device_count()
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
384
385
386
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        torch.distributed.init_process_group(backend='nccl')
thomwolf's avatar
thomwolf committed
387
388
        args.n_gpu = 1
    args.device = device
389

thomwolf's avatar
thomwolf committed
390
    # Setup logging
391
392
393
    logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
                        datefmt = '%m/%d/%Y %H:%M:%S',
                        level = logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
thomwolf's avatar
thomwolf committed
394
    logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
395
                    args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16)
396

397
398
    # Set seed
    set_seed(args)
399

thomwolf's avatar
thomwolf committed
400
    # Load pretrained model and tokenizer
401
    if args.local_rank not in [-1, 0]:
402
403
404
405
406
407
408
409
410
411
412
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab

    args.model_type = ""
    for key in MODEL_CLASSES:
        if key in args.model_name.lower():
            args.model_type = key  # take the first match in model types
            break
    config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
    config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name)
    tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name if args.tokenizer_name else args.model_name, do_lower_case=args.do_lower_case)
    model = model_class.from_pretrained(args.model_name, from_tf=bool('.ckpt' in args.model_name), config=config)
413
414

    if args.local_rank == 0:
415
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab
416

thomwolf's avatar
thomwolf committed
417
418
    # Distributed and parrallel training
    model.to(args.device)
419
    if args.local_rank != -1:
thomwolf's avatar
thomwolf committed
420
        model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
421
422
                                                          output_device=args.local_rank,
                                                          find_unused_parameters=True)
thomwolf's avatar
thomwolf committed
423
    elif args.n_gpu > 1:
424
425
        model = torch.nn.DataParallel(model)

426
427
    logger.info("Training/evaluation parameters %s", args)

thomwolf's avatar
thomwolf committed
428
    # Training
429
    if args.do_train:
430
431
432
        train_dataset = load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False)
        global_step, tr_loss = train(args, train_dataset, model, tokenizer)
        logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
433

434
435
436
437
438
439
440
441
442
443
444
445
446

    # Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
    if args.local_rank == -1 or torch.distributed.get_rank() == 0:
        # Create output directory if needed
        if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(args.output_dir)

        logger.info("Saving model checkpoint to %s", args.output_dir)
        # Save a trained model, configuration and tokenizer using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
        model_to_save = model.module if hasattr(model, 'module') else model  # Take care of distributed/parallel training
        model_to_save.save_pretrained(args.output_dir)
        tokenizer.save_pretrained(args.output_dir)
447
448

        # Good practice: save your training arguments together with the trained model
449
        torch.save(args, os.path.join(args.output_dir, 'training_args.bin'))
450

451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
        # Load a trained model and vocabulary that you have fine-tuned
        model = model_class.from_pretrained(args.output_dir)
        tokenizer = tokenizer_class.from_pretrained(args.output_dir)
        model.to(args.device)


    # Evaluation
    results = {}
    if args.do_eval and args.local_rank in [-1, 0]:
        checkpoints = [args.output_dir]
        if args.eval_all_checkpoints:
            checkpoints = list(os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME, recursive=True)))
            logging.getLogger("pytorch_transformers.modeling_utils").setLevel(logging.WARN)  # Reduce logging
        logger.info("Evaluate the following checkpoints: %s", checkpoints)
        for checkpoint in checkpoints:
            global_step = checkpoint.split('-')[-1] if len(checkpoints) > 1 else ""
            model = model_class.from_pretrained(checkpoint)
            model.to(args.device)
            result = evaluate(args, model, tokenizer, prefix=global_step)
            result = dict((k + ('_{}'.format(global_step) if global_step else ''), v) for k, v in result.items())
            results.update(result)
    logger.info("Results: {}".format(results))
    return results
474
475
476
477


if __name__ == "__main__":
    main()