"lightx2v/models/vscode:/vscode.git/clone" did not exist on "7fde70631ce0b7f67cb2476b44934cde93a2944d"
test_tokenization_t5.py 7.12 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 Google T5 Authors and HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16
17

import os
18
import unittest
thomwolf's avatar
thomwolf committed
19

20
from transformers import BatchEncoding
21
from transformers.file_utils import cached_property
22
from transformers.testing_utils import _torch_available
23
from transformers.tokenization_t5 import T5Tokenizer
24
from transformers.tokenization_xlnet import SPIECE_UNDERLINE
thomwolf's avatar
thomwolf committed
25

26
from .test_tokenization_common import TokenizerTesterMixin
thomwolf's avatar
thomwolf committed
27

Aymeric Augustin's avatar
Aymeric Augustin committed
28

29
30
SAMPLE_VOCAB = os.path.join(os.path.dirname(os.path.abspath(__file__)), "fixtures/test_sentencepiece.model")

31
32
FRAMEWORK = "pt" if _torch_available else "tf"

thomwolf's avatar
thomwolf committed
33

34
class T5TokenizationTest(TokenizerTesterMixin, unittest.TestCase):
thomwolf's avatar
thomwolf committed
35
36
37
38

    tokenizer_class = T5Tokenizer

    def setUp(self):
Julien Chaumond's avatar
Julien Chaumond committed
39
        super().setUp()
thomwolf's avatar
thomwolf committed
40
41

        # We have a SentencePiece fixture for testing
42
        tokenizer = T5Tokenizer(SAMPLE_VOCAB)
thomwolf's avatar
thomwolf committed
43
44
45
        tokenizer.save_pretrained(self.tmpdirname)

    def test_full_tokenizer(self):
46
        tokenizer = T5Tokenizer(SAMPLE_VOCAB)
thomwolf's avatar
thomwolf committed
47

48
49
        tokens = tokenizer.tokenize("This is a test")
        self.assertListEqual(tokens, ["鈻乀his", "鈻乮s", "鈻乤", "鈻乼", "est"])
thomwolf's avatar
thomwolf committed
50

51
        self.assertListEqual(tokenizer.convert_tokens_to_ids(tokens), [285, 46, 10, 170, 382])
thomwolf's avatar
thomwolf committed
52

53
        tokens = tokenizer.tokenize("I was born in 92000, and this is fals茅.")
thomwolf's avatar
thomwolf committed
54
        self.assertListEqual(
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
            tokens,
            [
                SPIECE_UNDERLINE + "I",
                SPIECE_UNDERLINE + "was",
                SPIECE_UNDERLINE + "b",
                "or",
                "n",
                SPIECE_UNDERLINE + "in",
                SPIECE_UNDERLINE + "",
                "9",
                "2",
                "0",
                "0",
                "0",
                ",",
                SPIECE_UNDERLINE + "and",
                SPIECE_UNDERLINE + "this",
                SPIECE_UNDERLINE + "is",
                SPIECE_UNDERLINE + "f",
                "al",
                "s",
                "茅",
                ".",
            ],
        )
        ids = tokenizer.convert_tokens_to_ids(tokens)
        self.assertListEqual(ids, [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4])
thomwolf's avatar
thomwolf committed
82
83

        back_tokens = tokenizer.convert_ids_to_tokens(ids)
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
        self.assertListEqual(
            back_tokens,
            [
                SPIECE_UNDERLINE + "I",
                SPIECE_UNDERLINE + "was",
                SPIECE_UNDERLINE + "b",
                "or",
                "n",
                SPIECE_UNDERLINE + "in",
                SPIECE_UNDERLINE + "",
                "<unk>",
                "2",
                "0",
                "0",
                "0",
                ",",
                SPIECE_UNDERLINE + "and",
                SPIECE_UNDERLINE + "this",
                SPIECE_UNDERLINE + "is",
                SPIECE_UNDERLINE + "f",
                "al",
                "s",
                "<unk>",
                ".",
            ],
        )
110

111
112
113
114
115
116
117
118
119
120
    @cached_property
    def t5_base_tokenizer(self):
        return T5Tokenizer.from_pretrained("t5-base")

    def test_eos_treatment(self):
        tokenizer = self.t5_base_tokenizer
        batch_with_eos_added = tokenizer(["hi</s>", "I went to the gym</s>", "</s>"])
        batch_without_eos_added = tokenizer(["hi", "I went to the gym", ""])
        self.assertListEqual(batch_with_eos_added["input_ids"], batch_without_eos_added["input_ids"])

121
    def test_prepare_seq2seq_batch(self):
122
        tokenizer = self.t5_base_tokenizer
123
124
125
126
127
        src_text = ["A long paragraph for summrization.", "Another paragraph for summrization."]
        tgt_text = [
            "Summary of the text.",
            "Another summary.",
        ]
128
        expected_src_tokens = [71, 307, 8986, 21, 4505, 51, 52, 1707, 5, tokenizer.eos_token_id]
Lysandre's avatar
Lysandre committed
129
130
131
132
133
        batch = tokenizer.prepare_seq2seq_batch(
            src_text,
            tgt_texts=tgt_text,
            return_tensors=FRAMEWORK,
        )
134
135
136
        self.assertIsInstance(batch, BatchEncoding)
        result = list(batch.input_ids.numpy()[0])
        self.assertListEqual(expected_src_tokens, result)
137
138
139
140

        self.assertEqual((2, 10), batch.input_ids.shape)
        self.assertEqual((2, 10), batch.attention_mask.shape)

141
142
143
144
        # Test that special tokens are reset
        self.assertEqual(tokenizer.prefix_tokens, [])

    def test_empty_target_text(self):
145
        tokenizer = self.t5_base_tokenizer
146
147
148
149
150
151
152
153
154
        src_text = ["A long paragraph for summrization.", "Another paragraph for summrization."]
        batch = tokenizer.prepare_seq2seq_batch(src_text, return_tensors=FRAMEWORK)
        # check if input_ids are returned and no decoder_input_ids
        self.assertIn("input_ids", batch)
        self.assertIn("attention_mask", batch)
        self.assertNotIn("decoder_input_ids", batch)
        self.assertNotIn("decoder_attention_mask", batch)

    def test_max_target_length(self):
155
        tokenizer = self.t5_base_tokenizer
156
        src_text = ["A short paragraph for summrization.", "Another short paragraph for summrization."]
157
158
159
160
161
162
163
        tgt_text = [
            "Summary of the text.",
            "Another summary.",
        ]
        batch = tokenizer.prepare_seq2seq_batch(
            src_text, tgt_texts=tgt_text, max_target_length=32, padding="max_length", return_tensors=FRAMEWORK
        )
164
        self.assertEqual(32, batch["labels"].shape[1])
165
166
167
168
169
170
        self.assertEqual(32, batch["decoder_attention_mask"].shape[1])

        # test None max_target_length
        batch = tokenizer.prepare_seq2seq_batch(
            src_text, tgt_texts=tgt_text, max_length=32, padding="max_length", return_tensors=FRAMEWORK
        )
171
        self.assertEqual(32, batch["labels"].shape[1])
172
173
174
        self.assertEqual(32, batch["decoder_attention_mask"].shape[1])

    def test_outputs_not_longer_than_maxlen(self):
175
        tokenizer = self.t5_base_tokenizer
176
177
178
179
180
181
182
183

        batch = tokenizer.prepare_seq2seq_batch(
            ["I am a small frog" * 1000, "I am a small frog"], return_tensors=FRAMEWORK
        )
        self.assertIsInstance(batch, BatchEncoding)
        self.assertEqual(batch.input_ids.shape, (2, 512))

    def test_eos_in_input(self):
184
        tokenizer = self.t5_base_tokenizer
185
186
187
188
189
190
191
192
        src_text = ["A long paragraph for summrization. </s>"]
        tgt_text = ["Summary of the text. </s>"]
        expected_src_tokens = [71, 307, 8986, 21, 4505, 51, 52, 1707, 5, 1]
        expected_tgt_tokens = [0, 20698, 13, 8, 1499, 5, 1]

        batch = tokenizer.prepare_seq2seq_batch(src_text, tgt_texts=tgt_text, return_tensors=FRAMEWORK)

        src_ids = list(batch.input_ids.numpy()[0])
193
        tgt_ids = list(batch.labels.numpy()[0])
194
195
196

        self.assertEqual(expected_src_tokens, src_ids)
        self.assertEqual(expected_tgt_tokens, tgt_ids)