test_tokenization_bart.py 5.71 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import json
import os
import unittest

from transformers import BartTokenizer, BartTokenizerFast, BatchEncoding
from transformers.file_utils import cached_property
from transformers.testing_utils import require_torch
from transformers.tokenization_roberta import VOCAB_FILES_NAMES

from .test_tokenization_common import TokenizerTesterMixin


class TestTokenizationBart(TokenizerTesterMixin, unittest.TestCase):
    tokenizer_class = BartTokenizer

    def setUp(self):
        super().setUp()
        vocab = [
            "l",
            "o",
            "w",
            "e",
            "r",
            "s",
            "t",
            "i",
            "d",
            "n",
            "\u0120",
            "\u0120l",
            "\u0120n",
            "\u0120lo",
            "\u0120low",
            "er",
            "\u0120lowest",
            "\u0120newer",
            "\u0120wider",
            "<unk>",
        ]
        vocab_tokens = dict(zip(vocab, range(len(vocab))))
        merges = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""]
        self.special_tokens_map = {"unk_token": "<unk>"}

        self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
        self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"])
        with open(self.vocab_file, "w", encoding="utf-8") as fp:
            fp.write(json.dumps(vocab_tokens) + "\n")
        with open(self.merges_file, "w", encoding="utf-8") as fp:
            fp.write("\n".join(merges))

    def get_tokenizer(self, **kwargs):
        kwargs.update(self.special_tokens_map)
        return self.tokenizer_class.from_pretrained(self.tmpdirname, **kwargs)

    def get_rust_tokenizer(self, **kwargs):
        kwargs.update(self.special_tokens_map)
        return BartTokenizerFast.from_pretrained(self.tmpdirname, **kwargs)

    def get_input_output_texts(self, tokenizer):
        return "lower newer", "lower newer"

    @cached_property
    def default_tokenizer(self):
        return BartTokenizer.from_pretrained("facebook/bart-large")

    @cached_property
    def default_tokenizer_fast(self):
        return BartTokenizerFast.from_pretrained("facebook/bart-large")

    @require_torch
    def test_prepare_seq2seq_batch(self):
        src_text = ["A long paragraph for summrization.", "Another paragraph for summrization."]
        tgt_text = [
            "Summary of the text.",
            "Another summary.",
        ]
        expected_src_tokens = [0, 250, 251, 17818, 13, 32933, 21645, 1258, 4, 2]

        for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
            batch = tokenizer.prepare_seq2seq_batch(
                src_text, tgt_texts=tgt_text, max_length=len(expected_src_tokens), return_tensors="pt"
            )
            self.assertIsInstance(batch, BatchEncoding)

            self.assertEqual((2, 10), batch.input_ids.shape)
            self.assertEqual((2, 10), batch.attention_mask.shape)
            result = batch.input_ids.tolist()[0]
            self.assertListEqual(expected_src_tokens, result)
            # Test that special tokens are reset

    # Test Prepare Seq
    @require_torch
    def test_seq2seq_batch_empty_target_text(self):
        src_text = ["A long paragraph for summrization.", "Another paragraph for summrization."]
        for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
            batch = tokenizer.prepare_seq2seq_batch(src_text, return_tensors="pt")
            # check if input_ids are returned and no labels
            self.assertIn("input_ids", batch)
            self.assertIn("attention_mask", batch)
            self.assertNotIn("labels", batch)
            self.assertNotIn("decoder_attention_mask", batch)

    @require_torch
    def test_seq2seq_batch_max_target_length(self):
        src_text = ["A long paragraph for summrization.", "Another paragraph for summrization."]
        tgt_text = [
            "Summary of the text.",
            "Another summary.",
        ]
        for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
            batch = tokenizer.prepare_seq2seq_batch(
                src_text, tgt_texts=tgt_text, max_target_length=32, padding="max_length", return_tensors="pt"
            )
            self.assertEqual(32, batch["labels"].shape[1])

            # test None max_target_length
            batch = tokenizer.prepare_seq2seq_batch(
                src_text, tgt_texts=tgt_text, max_length=32, padding="max_length", return_tensors="pt"
            )
            self.assertEqual(32, batch["labels"].shape[1])

    @require_torch
    def test_seq2seq_batch_not_longer_than_maxlen(self):
        for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
            batch = tokenizer.prepare_seq2seq_batch(
                ["I am a small frog" * 1024, "I am a small frog"], return_tensors="pt"
            )
            self.assertIsInstance(batch, BatchEncoding)
            self.assertEqual(batch.input_ids.shape, (2, 1024))

    @require_torch
    def test_special_tokens(self):

        src_text = ["A long paragraph for summrization."]
        tgt_text = [
            "Summary of the text.",
        ]
        for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
            batch = tokenizer.prepare_seq2seq_batch(src_text, tgt_texts=tgt_text, return_tensors="pt")
            input_ids = batch["input_ids"]
            labels = batch["labels"]
            self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item())
            self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item())
            self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item())
            self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item())