run_pl_glue.py 8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import argparse
import glob
import logging
import os
import time

import numpy as np
import torch
from torch.utils.data import DataLoader, TensorDataset

from transformer_base import BaseTransformer, add_generic_args, generic_train
from transformers import glue_compute_metrics as compute_metrics
from transformers import glue_convert_examples_to_features as convert_examples_to_features
from transformers import glue_output_modes
from transformers import glue_processors as processors
from transformers import glue_tasks_num_labels


logger = logging.getLogger(__name__)


class GLUETransformer(BaseTransformer):

    mode = "sequence-classification"

    def __init__(self, hparams):
        hparams.glue_output_mode = glue_output_modes[hparams.task]
        num_labels = glue_tasks_num_labels[hparams.task]

        super().__init__(hparams, num_labels, self.mode)

    def forward(self, **inputs):
        return self.model(**inputs)

    def training_step(self, batch, batch_idx):
        inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]}

        if self.hparams.model_type != "distilbert":
            inputs["token_type_ids"] = batch[2] if self.hparams.model_type in ["bert", "xlnet", "albert"] else None

        outputs = self(**inputs)
        loss = outputs[0]

        tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]}
        return {"loss": loss, "log": tensorboard_logs}

    def prepare_data(self):
        "Called to initialize data. Use the call to construct features"
        args = self.hparams
        processor = processors[args.task]()
        self.labels = processor.get_labels()

        for mode in ["train", "dev"]:
            cached_features_file = self._feature_file(mode)
            if not os.path.exists(cached_features_file) and not args.overwrite_cache:
                logger.info("Creating features from dataset file at %s", args.data_dir)
                examples = (
                    processor.get_dev_examples(args.data_dir)
                    if mode == "dev"
                    else processor.get_train_examples(args.data_dir)
                )
                features = convert_examples_to_features(
                    examples,
                    self.tokenizer,
                    max_length=args.max_seq_length,
                    task=args.task,
                    label_list=self.labels,
                    output_mode=args.glue_output_mode,
                    pad_on_left=bool(args.model_type in ["xlnet"]),  # pad on the left for xlnet
                    pad_token=self.tokenizer.convert_tokens_to_ids([self.tokenizer.pad_token])[0],
                    pad_token_segment_id=4 if args.model_type in ["xlnet"] else 0,
                )
                logger.info("Saving features into cached file %s", cached_features_file)
                torch.save(features, cached_features_file)

    def load_dataset(self, mode, batch_size):
        "Load datasets. Called after prepare data."

        # We test on dev set to compare to benchmarks without having to submit to GLUE server
        mode = "dev" if mode == "test" else mode

        cached_features_file = self._feature_file(mode)
        logger.info("Loading features from cached file %s", cached_features_file)
        features = torch.load(cached_features_file)
        all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
        all_attention_mask = torch.tensor([f.attention_mask for f in features], dtype=torch.long)
        all_token_type_ids = torch.tensor([f.token_type_ids for f in features], dtype=torch.long)
        if self.hparams.glue_output_mode == "classification":
            all_labels = torch.tensor([f.label for f in features], dtype=torch.long)
        elif self.hparams.glue_output_mode == "regression":
            all_labels = torch.tensor([f.label for f in features], dtype=torch.float)

        return DataLoader(
            TensorDataset(all_input_ids, all_attention_mask, all_token_type_ids, all_labels),
            batch_size=batch_size,
            shuffle=True,
        )

    def validation_step(self, batch, batch_idx):
        inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]}

        if self.hparams.model_type != "distilbert":
            inputs["token_type_ids"] = batch[2] if self.hparams.model_type in ["bert", "xlnet", "albert"] else None

        outputs = self(**inputs)
        tmp_eval_loss, logits = outputs[:2]
        preds = logits.detach().cpu().numpy()
        out_label_ids = inputs["labels"].detach().cpu().numpy()

        return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids}

    def _eval_end(self, outputs):
        val_loss_mean = torch.stack([x["val_loss"] for x in outputs]).mean().detach().cpu().item()
        preds = np.concatenate([x["pred"] for x in outputs], axis=0)

        if self.hparams.glue_output_mode == "classification":
            preds = np.argmax(preds, axis=1)
        elif self.hparams.glue_output_mode == "regression":
            preds = np.squeeze(preds)

        out_label_ids = np.concatenate([x["target"] for x in outputs], axis=0)
        out_label_list = [[] for _ in range(out_label_ids.shape[0])]
        preds_list = [[] for _ in range(out_label_ids.shape[0])]

        results = {**{"val_loss": val_loss_mean}, **compute_metrics(self.hparams.task, preds, out_label_ids)}

        ret = {k: v for k, v in results.items()}
        ret["log"] = results
        return ret, preds_list, out_label_list

    def validation_end(self, outputs: list) -> dict:
        ret, preds, targets = self._eval_end(outputs)
        logs = ret["log"]
        return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs}

    def test_epoch_end(self, outputs):
        # updating to test_epoch_end instead of deprecated test_end
        ret, predictions, targets = self._eval_end(outputs)

        # Converting to the dic required by pl
        # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\
        # pytorch_lightning/trainer/logging.py#L139
        logs = ret["log"]
        # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss`
        return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs}

    @staticmethod
    def add_model_specific_args(parser, root_dir):
        # Add NER specific options
        BaseTransformer.add_model_specific_args(parser, root_dir)
        parser.add_argument(
            "--max_seq_length",
            default=128,
            type=int,
            help="The maximum total input sequence length after tokenization. Sequences longer "
            "than this will be truncated, sequences shorter will be padded.",
        )

        parser.add_argument(
            "--task", default="", type=str, required=True, help="The GLUE task to run",
        )

        parser.add_argument(
            "--data_dir",
            default=None,
            type=str,
            required=True,
            help="The input data dir. Should contain the training files for the CoNLL-2003 NER task.",
        )

        parser.add_argument(
            "--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets"
        )

        return parser


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    add_generic_args(parser, os.getcwd())
    parser = GLUETransformer.add_model_specific_args(parser, os.getcwd())
    args = parser.parse_args()

    # If output_dir not provided, a folder will be generated in pwd
    if args.output_dir is None:
        args.output_dir = os.path.join("./results", f"{args.task}_{args.model_type}_{time.strftime('%Y%m%d_%H%M%S')}",)
        os.makedirs(args.output_dir)

    model = GLUETransformer(args)
    trainer = generic_train(model, args)

    # Optionally, predict on dev set and write to output_dir
    if args.do_predict:
        checkpoints = list(sorted(glob.glob(os.path.join(args.output_dir, "checkpointepoch=*.ckpt"), recursive=True)))
        GLUETransformer.load_from_checkpoint(checkpoints[-1])
        trainer.test(model)