test_tokenization_transfo_xl.py 3.22 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

16
17

import os
18
import unittest
19

20
from transformers import is_torch_available
21
from transformers.testing_utils import require_torch
22

23
from .test_tokenization_common import TokenizerTesterMixin
Aymeric Augustin's avatar
Aymeric Augustin committed
24
25


26
if is_torch_available():
27
    from transformers.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer
thomwolf's avatar
thomwolf committed
28

29
30

@require_torch
31
class TransfoXLTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
32

thomwolf's avatar
thomwolf committed
33
    tokenizer_class = TransfoXLTokenizer if is_torch_available() else None
34
35

    def setUp(self):
Julien Chaumond's avatar
Julien Chaumond committed
36
        super().setUp()
37
38

        vocab_tokens = [
39
40
41
42
43
44
45
46
47
48
49
            "<unk>",
            "[CLS]",
            "[SEP]",
            "want",
            "unwanted",
            "wa",
            "un",
            "running",
            ",",
            "low",
            "l",
50
        ]
51
52
        self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
        with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer:
53
            vocab_writer.write("".join([x + "\n" for x in vocab_tokens]))
54

55
    def get_tokenizer(self, **kwargs):
56
        kwargs["lower_case"] = True
57
        return TransfoXLTokenizer.from_pretrained(self.tmpdirname, **kwargs)
58

59
    def get_input_output_texts(self, tokenizer):
60
61
        input_text = "<unk> UNwanted , running"
        output_text = "<unk> unwanted, running"
62
        return input_text, output_text
63

64
65
    def test_full_tokenizer(self):
        tokenizer = TransfoXLTokenizer(vocab_file=self.vocab_file, lower_case=True)
66

67
        tokens = tokenizer.tokenize("<unk> UNwanted , running")
68
        self.assertListEqual(tokens, ["<unk>", "unwanted", ",", "running"])
69

70
        self.assertListEqual(tokenizer.convert_tokens_to_ids(tokens), [0, 4, 8, 7])
71

72
73
74
75
    def test_full_tokenizer_lower(self):
        tokenizer = TransfoXLTokenizer(lower_case=True)

        self.assertListEqual(
76
77
            tokenizer.tokenize(" \tHeLLo ! how  \n Are yoU ?  "), ["hello", "!", "how", "are", "you", "?"]
        )
78
79
80
81
82

    def test_full_tokenizer_no_lower(self):
        tokenizer = TransfoXLTokenizer(lower_case=False)

        self.assertListEqual(
83
84
            tokenizer.tokenize(" \tHeLLo ! how  \n Are yoU ?  "), ["HeLLo", "!", "how", "Are", "yoU", "?"]
        )
85
86
87
88
89
90
91
92
93
94
95
96
97

    def test_move_added_token(self):
        tokenizer = self.get_tokenizer()
        original_len = len(tokenizer)

        tokenizer.add_tokens(["new1", "new2"])
        tokenizer.move_added_token("new1", 1)

        # Check that moved token is not copied (duplicate)
        self.assertEqual(len(tokenizer), original_len + 2)
        # Check that token is moved to specified id
        self.assertEqual(tokenizer.encode("new1"), [1])
        self.assertEqual(tokenizer.decode([1]), "new1")