test_tokenization_mbart50.py 9.47 KB
Newer Older
Suraj Patil's avatar
Suraj Patil committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import tempfile
import unittest

from transformers import SPIECE_UNDERLINE, BatchEncoding, MBart50Tokenizer, MBart50TokenizerFast, is_torch_available
20
from transformers.testing_utils import nested_simplify, require_sentencepiece, require_tokenizers, require_torch
Suraj Patil's avatar
Suraj Patil committed
21
22
23
24

from .test_tokenization_common import TokenizerTesterMixin


25
SAMPLE_VOCAB = os.path.join(os.path.dirname(os.path.abspath(__file__)), "fixtures/test_sentencepiece.model")
Suraj Patil's avatar
Suraj Patil committed
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129


if is_torch_available():
    from transformers.models.mbart.modeling_mbart import shift_tokens_right

EN_CODE = 250004
RO_CODE = 250020


@require_sentencepiece
@require_tokenizers
class MBartTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
    tokenizer_class = MBart50Tokenizer
    rust_tokenizer_class = MBart50TokenizerFast
    test_rust_tokenizer = True

    def setUp(self):
        super().setUp()

        # We have a SentencePiece fixture for testing
        tokenizer = MBart50Tokenizer(SAMPLE_VOCAB, src_lang="en_XX", tgt_lang="ro_RO", keep_accents=True)
        tokenizer.save_pretrained(self.tmpdirname)

    def test_full_tokenizer(self):
        tokenizer = MBart50Tokenizer(SAMPLE_VOCAB, src_lang="en_XX", tgt_lang="ro_RO", keep_accents=True)

        tokens = tokenizer.tokenize("This is a test")
        self.assertListEqual(tokens, ["鈻乀his", "鈻乮s", "鈻乤", "鈻乼", "est"])

        self.assertListEqual(
            tokenizer.convert_tokens_to_ids(tokens),
            [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]],
        )

        tokens = tokenizer.tokenize("I was born in 92000, and this is fals茅.")
        self.assertListEqual(
            tokens,
            # fmt: off
            [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "茅", "."],
            # fmt: on
        )
        ids = tokenizer.convert_tokens_to_ids(tokens)
        self.assertListEqual(
            ids,
            [
                value + tokenizer.fairseq_offset
                for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
            ],
        )

        back_tokens = tokenizer.convert_ids_to_tokens(ids)
        self.assertListEqual(
            back_tokens,
            # fmt: off
            [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", "."],
            # fmt: on
        )


@require_torch
@require_sentencepiece
@require_tokenizers
class MBartOneToManyIntegrationTest(unittest.TestCase):
    checkpoint_name = "facebook/mbart-large-50-one-to-many-mmt"
    src_text = [
        " UN Chief Says There Is No Military Solution in Syria",
        """ Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.""",
    ]
    tgt_text = [
        "艦eful ONU declar膬 c膬 nu exist膬 o solu牛ie militar膬 卯n Siria",
        'Secretarul General Ban Ki-moon declar膬 c膬 r膬spunsul s膬u la intensificarea sprijinului militar al Rusiei pentru Siria este c膬 "nu exist膬 o solu牛ie militar膬" la conflictul de aproape cinci ani 艧i c膬 noi arme nu vor face dec芒t s膬 卯nr膬ut膬牛easc膬 violen牛ele 艧i mizeria pentru milioane de oameni.',
    ]
    expected_src_tokens = [EN_CODE, 8274, 127873, 25916, 7, 8622, 2071, 438, 67485, 53, 187895, 23, 51712, 2]

    @classmethod
    def setUpClass(cls):
        cls.tokenizer: MBart50Tokenizer = MBart50Tokenizer.from_pretrained(
            cls.checkpoint_name, src_lang="en_XX", tgt_lang="ro_RO"
        )
        cls.pad_token_id = 1
        return cls

    def check_language_codes(self):
        self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ar_AR"], 250001)
        self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["en_EN"], 250004)
        self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ro_RO"], 250020)
        self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["mr_IN"], 250038)

    def test_tokenizer_batch_encode_plus(self):
        ids = self.tokenizer.batch_encode_plus(self.src_text).input_ids[0]
        self.assertListEqual(self.expected_src_tokens, ids)

    def test_tokenizer_decode_ignores_language_codes(self):
        self.assertIn(RO_CODE, self.tokenizer.all_special_ids)
        generated_ids = [RO_CODE, 884, 9019, 96, 9, 916, 86792, 36, 18743, 15596, 5, 2]
        result = self.tokenizer.decode(generated_ids, skip_special_tokens=True)
        expected_romanian = self.tokenizer.decode(generated_ids[1:], skip_special_tokens=True)
        self.assertEqual(result, expected_romanian)
        self.assertNotIn(self.tokenizer.eos_token, result)

    def test_tokenizer_truncation(self):
        src_text = ["this is gunna be a long sentence " * 20]
        assert isinstance(src_text[0], str)
        desired_max_length = 10
130
        ids = self.tokenizer(src_text, max_length=desired_max_length, truncation=True).input_ids[0]
Suraj Patil's avatar
Suraj Patil committed
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
        self.assertEqual(ids[0], EN_CODE)
        self.assertEqual(ids[-1], 2)
        self.assertEqual(len(ids), desired_max_length)

    def test_mask_token(self):
        self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "ar_AR"]), [250053, 250001])

    def test_special_tokens_unaffacted_by_save_load(self):
        tmpdirname = tempfile.mkdtemp()
        original_special_tokens = self.tokenizer.fairseq_tokens_to_ids
        self.tokenizer.save_pretrained(tmpdirname)
        new_tok = MBart50Tokenizer.from_pretrained(tmpdirname)
        self.assertDictEqual(new_tok.fairseq_tokens_to_ids, original_special_tokens)

    @require_torch
    def test_batch_fairseq_parity(self):
147
148
149
150
151
152
        batch = self.tokenizer(self.src_text, padding=True)
        with self.tokenizer.as_target_tokenizer():
            targets = self.tokenizer(self.tgt_text, padding=True, return_tensors="pt")
        labels = targets["input_ids"]
        batch["decoder_input_ids"] = shift_tokens_right(labels, self.tokenizer.pad_token_id).tolist()
        labels = labels.tolist()
Suraj Patil's avatar
Suraj Patil committed
153
154
155
156

        # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
        assert batch.input_ids[1][0] == EN_CODE
        assert batch.input_ids[1][-1] == 2
157
158
        assert labels[1][0] == RO_CODE
        assert labels[1][-1] == 2
Suraj Patil's avatar
Suraj Patil committed
159
160
161
        assert batch.decoder_input_ids[1][:2] == [2, RO_CODE]

    @require_torch
162
163
164
    def test_tokenizer_prepare_batch(self):
        batch = self.tokenizer(
            self.src_text, padding=True, truncation=True, max_length=len(self.expected_src_tokens), return_tensors="pt"
Suraj Patil's avatar
Suraj Patil committed
165
        )
166
167
168
169
170
171
172
173
174
175
176
        with self.tokenizer.as_target_tokenizer():
            targets = self.tokenizer(
                self.tgt_text,
                padding=True,
                truncation=True,
                max_length=len(self.expected_src_tokens),
                return_tensors="pt",
            )
        labels = targets["input_ids"]
        batch["decoder_input_ids"] = shift_tokens_right(labels, self.tokenizer.pad_token_id)

Suraj Patil's avatar
Suraj Patil committed
177
178
179
180
181
182
183
184
185
186
187
188
        self.assertIsInstance(batch, BatchEncoding)

        self.assertEqual((2, 14), batch.input_ids.shape)
        self.assertEqual((2, 14), batch.attention_mask.shape)
        result = batch.input_ids.tolist()[0]
        self.assertListEqual(self.expected_src_tokens, result)
        self.assertEqual(2, batch.decoder_input_ids[0, 0])  # decoder_start_token_id
        # Test that special tokens are reset
        self.assertEqual(self.tokenizer.prefix_tokens, [EN_CODE])
        self.assertEqual(self.tokenizer.suffix_tokens, [self.tokenizer.eos_token_id])

    def test_seq2seq_max_target_length(self):
189
190
191
192
193
194
        batch = self.tokenizer(self.src_text, padding=True, truncation=True, max_length=3, return_tensors="pt")
        with self.tokenizer.as_target_tokenizer():
            targets = self.tokenizer(self.tgt_text, padding=True, truncation=True, max_length=10, return_tensors="pt")
        labels = targets["input_ids"]
        batch["decoder_input_ids"] = shift_tokens_right(labels, self.tokenizer.pad_token_id)

Suraj Patil's avatar
Suraj Patil committed
195
196
        self.assertEqual(batch.input_ids.shape[1], 3)
        self.assertEqual(batch.decoder_input_ids.shape[1], 10)
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211

    @require_torch
    def test_tokenizer_translation(self):
        inputs = self.tokenizer._build_translation_inputs("A test", src_lang="en_XX", tgt_lang="ar_AR")

        self.assertEqual(
            nested_simplify(inputs),
            {
                # en_XX, A, test, EOS
                "input_ids": [[250004, 62, 3034, 2]],
                "attention_mask": [[1, 1, 1, 1]],
                # ar_AR
                "forced_bos_token_id": 250001,
            },
        )