test_tokenization_m2m_100.py 8.26 KB
Newer Older
Suraj Patil's avatar
Suraj Patil committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import tempfile
import unittest
from pathlib import Path
from shutil import copyfile

from transformers import M2M100Tokenizer, is_torch_available
from transformers.file_utils import is_sentencepiece_available
23
from transformers.testing_utils import nested_simplify, require_sentencepiece, require_tokenizers, require_torch
Suraj Patil's avatar
Suraj Patil committed
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193


if is_sentencepiece_available():
    from transformers.models.m2m_100.tokenization_m2m_100 import save_json, VOCAB_FILES_NAMES

from .test_tokenization_common import TokenizerTesterMixin


if is_sentencepiece_available():
    SAMPLE_SP = os.path.join(os.path.dirname(os.path.abspath(__file__)), "fixtures/test_sentencepiece.model")


if is_torch_available():
    from transformers.models.m2m_100.modeling_m2m_100 import shift_tokens_right

EN_CODE = 128022
FR_CODE = 128028


@require_sentencepiece
class M2M100TokenizationTest(TokenizerTesterMixin, unittest.TestCase):
    tokenizer_class = M2M100Tokenizer
    test_rust_tokenizer = False
    test_seq2seq = False

    def setUp(self):
        super().setUp()

        vocab = ["</s>", "<unk>", "鈻乀his", "鈻乮s", "鈻乤", "鈻乼", "est", "\u0120", "<pad>"]
        vocab_tokens = dict(zip(vocab, range(len(vocab))))
        save_dir = Path(self.tmpdirname)
        save_json(vocab_tokens, save_dir / VOCAB_FILES_NAMES["vocab_file"])
        if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists():
            copyfile(SAMPLE_SP, save_dir / VOCAB_FILES_NAMES["spm_file"])

        tokenizer = M2M100Tokenizer.from_pretrained(self.tmpdirname)
        tokenizer.save_pretrained(self.tmpdirname)

    def get_tokenizer(self, **kwargs):
        return M2M100Tokenizer.from_pretrained(self.tmpdirname, **kwargs)

    def get_input_output_texts(self, tokenizer):
        return (
            "This is a test",
            "This is a test",
        )

    @unittest.skip("Skip this test while all models are still to be uploaded.")
    def test_pretrained_model_lists(self):
        pass

    def test_full_tokenizer(self):
        tokenizer = self.get_tokenizer()

        tokens = tokenizer.tokenize("This is a test")
        self.assertListEqual(tokens, ["鈻乀his", "鈻乮s", "鈻乤", "鈻乼", "est"])

        self.assertListEqual(
            tokenizer.convert_tokens_to_ids(tokens),
            [2, 3, 4, 5, 6],
        )

        back_tokens = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6])
        self.assertListEqual(back_tokens, ["鈻乀his", "鈻乮s", "鈻乤", "鈻乼", "est"])

        text = tokenizer.convert_tokens_to_string(tokens)
        self.assertEqual(text, "This is a test")


@require_torch
@require_sentencepiece
@require_tokenizers
class M2M100TokenizerIntegrationTest(unittest.TestCase):
    checkpoint_name = "facebook/m2m100_418M"
    src_text = [
        "In my opinion, there are two levels of response from the French government.",
        "NSA Affair Emphasizes Complete Lack of Debate on Intelligence",
    ]
    tgt_text = [
        "Selon moi, il y a deux niveaux de r茅ponse de la part du gouvernement fran莽ais.",
        "L'affaire NSA souligne l'absence totale de d茅bat sur le renseignement",
    ]

    # fmt: off
    expected_src_tokens = [EN_CODE, 593, 1949, 115781, 4, 71586, 4234, 60633, 126233, 432, 123808, 15592, 1197, 117132, 120618, 5, 2]
    # fmt: on

    @classmethod
    def setUpClass(cls):
        cls.tokenizer: M2M100Tokenizer = M2M100Tokenizer.from_pretrained(
            cls.checkpoint_name, src_lang="en", tgt_lang="fr"
        )
        cls.pad_token_id = 1
        return cls

    def check_language_codes(self):
        self.assertEqual(self.tokenizer.get_lang_id("ar"), 128006)
        self.assertEqual(self.tokenizer.get_lang_id("en"), 128022)
        self.assertEqual(self.tokenizer.get_lang_id("ro"), 128076)
        self.assertEqual(self.tokenizer.get_lang_id("mr"), 128063)

    def test_tokenizer_batch_encode_plus(self):
        self.tokenizer.src_lang = "en"
        ids = self.tokenizer.batch_encode_plus(self.src_text).input_ids[0]
        self.assertListEqual(self.expected_src_tokens, ids)

    def test_tokenizer_decode_ignores_language_codes(self):
        self.assertIn(FR_CODE, self.tokenizer.all_special_ids)
        # fmt: off
        generated_ids = [FR_CODE, 5364, 82, 8642, 4, 294, 47, 8, 14028, 136, 3286, 9706, 6, 90797, 6, 144012, 162, 88128, 30061, 5, 2]
        # fmt: on
        result = self.tokenizer.decode(generated_ids, skip_special_tokens=True)
        expected_french = self.tokenizer.decode(generated_ids[1:], skip_special_tokens=True)
        self.assertEqual(result, expected_french)
        self.assertNotIn(self.tokenizer.eos_token, result)

    def test_special_tokens_unaffacted_by_save_load(self):
        tmpdirname = tempfile.mkdtemp()
        original_special_tokens = self.tokenizer.lang_token_to_id
        self.tokenizer.save_pretrained(tmpdirname)
        new_tok = M2M100Tokenizer.from_pretrained(tmpdirname)
        self.assertDictEqual(new_tok.lang_token_to_id, original_special_tokens)

    @require_torch
    def test_batch_fairseq_parity(self):
        self.tokenizer.src_lang = "en"
        self.tokenizer.tgt_lang = "fr"

        batch = self.tokenizer(self.src_text, padding=True, return_tensors="pt")
        with self.tokenizer.as_target_tokenizer():
            batch["labels"] = self.tokenizer(self.tgt_text, padding=True, return_tensors="pt").input_ids

        batch["decoder_input_ids"] = shift_tokens_right(
            batch["labels"], self.tokenizer.pad_token_id, self.tokenizer.eos_token_id
        )

        for k in batch:
            batch[k] = batch[k].tolist()
        # batch = {k: v.tolist() for k,v in batch.items()}
        # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
        # batch.decoder_inputs_ids[0][0] ==
        assert batch.input_ids[1][0] == EN_CODE
        assert batch.input_ids[1][-1] == 2
        assert batch.labels[1][0] == FR_CODE
        assert batch.labels[1][-1] == 2
        assert batch.decoder_input_ids[1][:2] == [2, FR_CODE]

    @require_torch
    def test_src_lang_setter(self):
        self.tokenizer.src_lang = "mr"
        self.assertListEqual(self.tokenizer.prefix_tokens, [self.tokenizer.get_lang_id("mr")])
        self.assertListEqual(self.tokenizer.suffix_tokens, [self.tokenizer.eos_token_id])

        self.tokenizer.src_lang = "zh"
        self.assertListEqual(self.tokenizer.prefix_tokens, [self.tokenizer.get_lang_id("zh")])
        self.assertListEqual(self.tokenizer.suffix_tokens, [self.tokenizer.eos_token_id])

    @require_torch
    def test_as_target_tokenizer(self):
        self.tokenizer.tgt_lang = "mr"
        with self.tokenizer.as_target_tokenizer():
            self.assertListEqual(self.tokenizer.prefix_tokens, [self.tokenizer.get_lang_id("mr")])
            self.assertListEqual(self.tokenizer.suffix_tokens, [self.tokenizer.eos_token_id])
        self.assertListEqual(self.tokenizer.prefix_tokens, [self.tokenizer.get_lang_id(self.tokenizer.src_lang)])

        self.tokenizer.tgt_lang = "zh"
        with self.tokenizer.as_target_tokenizer():
            self.assertListEqual(self.tokenizer.prefix_tokens, [self.tokenizer.get_lang_id("zh")])
            self.assertListEqual(self.tokenizer.suffix_tokens, [self.tokenizer.eos_token_id])
        self.assertListEqual(self.tokenizer.prefix_tokens, [self.tokenizer.get_lang_id(self.tokenizer.src_lang)])
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208

    @require_torch
    def test_tokenizer_translation(self):
        inputs = self.tokenizer._build_translation_inputs("A test", src_lang="en", tgt_lang="ar")

        self.assertEqual(
            nested_simplify(inputs),
            {
                # en_XX, A, test, EOS
                "input_ids": [[128022, 58, 4183, 2]],
                "attention_mask": [[1, 1, 1, 1]],
                # ar_AR
                "forced_bos_token_id": 128006,
            },
        )