utils.py 4.1 KB
Newer Older
VictorSanh's avatar
VictorSanh committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2019-present, the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
thomwolf's avatar
thomwolf committed
16
Utils to train DistilBERT.
VictorSanh's avatar
VictorSanh committed
17
"""
VictorSanh's avatar
VictorSanh committed
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import git
import json
import os
import socket
import torch
import numpy as np

import logging
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d -  %(message)s',
                    datefmt = '%m/%d/%Y %H:%M:%S',
                    level = logging.INFO)
logger = logging.getLogger(__name__)


def git_log(folder_path: str):
    """
    Log commit info.
    """
    repo = git.Repo(search_parent_directories=True)
    repo_infos = {
        'repo_id': str(repo),
        'repo_sha': str(repo.head.object.hexsha),
        'repo_branch': str(repo.active_branch)
    }

    with open(os.path.join(folder_path, 'git_log.json'), 'w') as f:
        json.dump(repo_infos, f, indent=4)


def init_gpu_params(params):
    """
    Handle single and multi-GPU / multi-node.
    """
    if params.n_gpu <= 0:
        params.local_rank = 0
        params.master_port = -1
        params.is_master = True
        params.multi_gpu = False
        return

    assert torch.cuda.is_available()

    logger.info('Initializing GPUs')
    if params.n_gpu > 1:
        assert params.local_rank != -1

        params.world_size = int(os.environ['WORLD_SIZE'])
        params.n_gpu_per_node = int(os.environ['N_GPU_NODE'])
        params.global_rank = int(os.environ['RANK'])

        # number of nodes / node ID
        params.n_nodes = params.world_size // params.n_gpu_per_node
        params.node_id = params.global_rank // params.n_gpu_per_node
        params.multi_gpu = True

        assert params.n_nodes == int(os.environ['N_NODES'])
        assert params.node_id == int(os.environ['NODE_RANK'])

    # local job (single GPU)
    else:
        assert params.local_rank == -1

        params.n_nodes = 1
        params.node_id = 0
        params.local_rank = 0
        params.global_rank = 0
        params.world_size = 1
        params.n_gpu_per_node = 1
        params.multi_gpu = False

    # sanity checks
    assert params.n_nodes >= 1
    assert 0 <= params.node_id < params.n_nodes
    assert 0 <= params.local_rank <= params.global_rank < params.world_size
    assert params.world_size == params.n_nodes * params.n_gpu_per_node

    # define whether this is the master process / if we are in multi-node distributed mode
    params.is_master = params.node_id == 0 and params.local_rank == 0
    params.multi_node = params.n_nodes > 1

    # summary
    PREFIX = f"--- Global rank: {params.global_rank} - "
    logger.info(PREFIX + "Number of nodes: %i" % params.n_nodes)
    logger.info(PREFIX + "Node ID        : %i" % params.node_id)
    logger.info(PREFIX + "Local rank     : %i" % params.local_rank)
    logger.info(PREFIX + "World size     : %i" % params.world_size)
    logger.info(PREFIX + "GPUs per node  : %i" % params.n_gpu_per_node)
    logger.info(PREFIX + "Master         : %s" % str(params.is_master))
    logger.info(PREFIX + "Multi-node     : %s" % str(params.multi_node))
    logger.info(PREFIX + "Multi-GPU      : %s" % str(params.multi_gpu))
    logger.info(PREFIX + "Hostname       : %s" % socket.gethostname())

    # set GPU device
    torch.cuda.set_device(params.local_rank)

    # initialize multi-GPU
    if params.multi_gpu:
        logger.info("Initializing PyTorch distributed")
        torch.distributed.init_process_group(
            init_method='env://',
            backend='nccl',
        )


def set_seed(args):
    """
    Set the random seed.
    """
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if args.n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)