"tools/git@developer.sourcefind.cn:sugon_wxj/megatron-lm.git" did not exist on "d413bd5f98795296bc31625fbef4c22975964510"
token_counts.py 1.8 KB
Newer Older
VictorSanh's avatar
VictorSanh committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2019-present, the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
thomwolf's avatar
thomwolf committed
16
Preprocessing script before training DistilBERT.
VictorSanh's avatar
VictorSanh committed
17
"""
VictorSanh's avatar
VictorSanh committed
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
from collections import Counter
import argparse
import pickle

from utils import logger

if __name__ == '__main__':
    parser = argparse.ArgumentParser(description="Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)")
    parser.add_argument("--data_file", type=str, default="data/dump.bert-base-uncased.pickle",
                        help="The binarized dataset."
    parser.add_argument("--token_counts_dump", type=str, default="data/token_counts.bert-base-uncased.pickle",
                        help="The dump file.")
    parser.add_argument("--vocab_size", default=30522, type=int)
    args = parser.parse_args()

    logger.info(f'Loading data from {args.data_file}')
    with open(args.data_file, 'rb') as fp:
        data = pickle.load(fp)

    logger.info('Counting occurences for MLM.')
    counter = Counter()
    for tk_ids in data:
        counter.update(tk_ids)
    counts = [0]*args.vocab_size
    for k, v in counter.items():
        counts[k] = v

    logger.info(f'Dump to {args.token_counts_dump}')
    with open(args.token_counts_dump, 'wb') as handle:
        pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)