README.md 2.32 KB
Newer Older
Manuel Romero's avatar
Manuel Romero committed
1
---
2
language: en
Manuel Romero's avatar
Manuel Romero committed
3
4
5
6
7
8
9
10
11
12
13
thumbnail:
---

# BERT SMALL + Typo Detection ✍❌✍✔

[BERT SMALL](https://huggingface.co/google/bert_uncased_L-4_H-512_A-8) fine-tuned on [GitHub Typo Corpus](https://github.com/mhagiwara/github-typo-corpus) for **typo detection** (using *NER* style)

## Details of the downstream task (Typo detection as NER)

- Dataset: [GitHub Typo Corpus](https://github.com/mhagiwara/github-typo-corpus) 📚

14
- [Fine-tune script on NER dataset provided by Huggingface](https://github.com/huggingface/transformers/blob/master/examples/token-classification/run_ner_old.py) 🏋️‍♂️
Manuel Romero's avatar
Manuel Romero committed
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

## Metrics on test set 📋

|  Metric   |  # score  |
| :-------: | :-------: |
|    F1     | **89.12** |
| Precision | **93.82** |
|  Recall   | **84.87** |

## Model in action 🔨

Fast usage with **pipelines** 🧪

```python
from transformers import pipeline

typo_checker = pipeline(
    "ner",
    model="mrm8488/bert-small-finetuned-typo-detection",
    tokenizer="mrm8488/bert-small-finetuned-typo-detection"
)

result = typo_checker("here there is an error in coment")
result[1:-1]

# Output:
[{'entity': 'ok', 'score': 0.9021041989326477, 'word': 'here'},
 {'entity': 'ok', 'score': 0.7975626587867737, 'word': 'there'},
 {'entity': 'ok', 'score': 0.8596242070198059, 'word': 'is'},
 {'entity': 'ok', 'score': 0.7071516513824463, 'word': 'an'},
 {'entity': 'ok', 'score': 0.943381130695343, 'word': 'error'},
 {'entity': 'ok', 'score': 0.8047608733177185, 'word': 'in'},
 {'entity': 'ok', 'score': 0.8240702152252197, 'word': 'come'},
 {'entity': 'typo', 'score': 0.5004884004592896, 'word': '##nt'}]
```

It works🎉! we typed ```coment``` instead of ```comment```

Let's try with another example

```python
result = typo_checker("Adddd validation midelware")
result[1:-1]

# Output:
[{'entity': 'ok', 'score': 0.7128152847290039, 'word': 'add'},
 {'entity': 'typo', 'score': 0.5388424396514893, 'word': '##dd'},
 {'entity': 'ok', 'score': 0.94792640209198, 'word': 'validation'},
 {'entity': 'typo', 'score': 0.5839331746101379, 'word': 'mid'},
 {'entity': 'ok', 'score': 0.5195121765136719, 'word': '##el'},
 {'entity': 'ok', 'score': 0.7222476601600647, 'word': '##ware'}]
```
Yeah! We typed wrong ```Add and middleware```


> Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488)

> Made with <span style="color: #e25555;">&hearts;</span> in Spain