README.md 2.57 KB
Newer Older
Manuel Romero's avatar
Manuel Romero committed
1
---
2
language: es
Manuel Romero's avatar
Manuel Romero committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
thumbnail:
---

# RuPERTa-base  (Spanish RoBERTa) + POS 馃巸馃彿

This model is a fine-tuned on [CONLL CORPORA](https://www.kaggle.com/nltkdata/conll-corpora) version of [RuPERTa-base](https://huggingface.co/mrm8488/RuPERTa-base) for **POS** downstream task.

## Details of the downstream task (POS) - Dataset

- [Dataset:  CONLL Corpora ES](https://www.kaggle.com/nltkdata/conll-corpora) 馃摎

| Dataset                | # Examples |
| ---------------------- | ----- |
| Train                  | 445 K |
| Dev                    | 55 K |

19
- [Fine-tune on NER script provided by Huggingface](https://github.com/huggingface/transformers/blob/master/examples/token-classification/run_ner_old.py)
Manuel Romero's avatar
Manuel Romero committed
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111

- Labels covered:

```
ADJ
ADP
ADV
AUX
CCONJ
DET
INTJ
NOUN
NUM
PART
PRON
PROPN
PUNCT
SCONJ
SYM
VERB
```

## Metrics on evaluation set 馃Ь

|                                                      Metric                                                       |  # score  |
| :------------------------------------------------------------------------------------: | :-------: |
| F1                                       | **97.39**  
| Precision                                | **97.47** | 
| Recall                                   | **9732** |    

## Model in action 馃敤


Example of usage

```python
import torch
from transformers import AutoModelForTokenClassification, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('mrm8488/RuPERTa-base-finetuned-pos')
model = AutoModelForTokenClassification.from_pretrained('mrm8488/RuPERTa-base-finetuned-pos')

id2label = {
    "0": "O",
    "1": "ADJ",
    "2": "ADP",
    "3": "ADV",
    "4": "AUX",
    "5": "CCONJ",
    "6": "DET",
    "7": "INTJ",
    "8": "NOUN",
    "9": "NUM",
    "10": "PART",
    "11": "PRON",
    "12": "PROPN",
    "13": "PUNCT",
    "14": "SCONJ",
    "15": "SYM",
    "16": "VERB"
}

text ="Mis amigos est谩n pensando viajar a Londres este verano."
input_ids = torch.tensor(tokenizer.encode(text)).unsqueeze(0)

outputs = model(input_ids)
last_hidden_states = outputs[0]

for m in last_hidden_states:
  for index, n in enumerate(m):
    if(index > 0 and index <= len(text.split(" "))):
      print(text.split(" ")[index-1] + ": " + id2label[str(torch.argmax(n).item())])
      
'''
Output:
--------
Mis: NUM
amigos: PRON
est谩n: AUX
pensando: ADV
viajar: VERB
a: ADP
Londres: PROPN
este: DET
verano..: NOUN
'''
```
Yeah! Not too bad 馃帀

> Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488) | [LinkedIn](https://www.linkedin.com/in/manuel-romero-cs/)

> Made with <span style="color: #e25555;">&hearts;</span> in Spain