".github/vscode:/vscode.git/clone" did not exist on "3455f8993b1dea3bb35917ad2e8291349f749f60"
test_tokenization_rag.py 6.56 KB
Newer Older
Ola Piktus's avatar
Ola Piktus committed
1
2
3
4
5
6
import json
import os
import shutil
import tempfile
from unittest import TestCase

7
from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast
Ola Piktus's avatar
Ola Piktus committed
8
9
10
from transformers.configuration_bart import BartConfig
from transformers.configuration_dpr import DPRConfig
from transformers.file_utils import is_datasets_available, is_faiss_available, is_torch_available
11
from transformers.testing_utils import require_datasets, require_faiss, require_tokenizers, require_torch, slow
Ola Piktus's avatar
Ola Piktus committed
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
from transformers.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES
from transformers.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES


if is_torch_available() and is_datasets_available() and is_faiss_available():
    from transformers.configuration_rag import RagConfig
    from transformers.tokenization_rag import RagTokenizer


@require_faiss
@require_datasets
@require_torch
class RagTokenizerTest(TestCase):
    def setUp(self):
        self.tmpdirname = tempfile.mkdtemp()
        self.retrieval_vector_size = 8

        # DPR tok
        vocab_tokens = [
            "[UNK]",
            "[CLS]",
            "[SEP]",
            "[PAD]",
            "[MASK]",
            "want",
            "##want",
            "##ed",
            "wa",
            "un",
            "runn",
            "##ing",
            ",",
            "low",
            "lowest",
        ]
        dpr_tokenizer_path = os.path.join(self.tmpdirname, "dpr_tokenizer")
        os.makedirs(dpr_tokenizer_path, exist_ok=True)
        self.vocab_file = os.path.join(dpr_tokenizer_path, DPR_VOCAB_FILES_NAMES["vocab_file"])
        with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer:
            vocab_writer.write("".join([x + "\n" for x in vocab_tokens]))

        # BART tok
        vocab = [
            "l",
            "o",
            "w",
            "e",
            "r",
            "s",
            "t",
            "i",
            "d",
            "n",
            "\u0120",
            "\u0120l",
            "\u0120n",
            "\u0120lo",
            "\u0120low",
            "er",
            "\u0120lowest",
            "\u0120newer",
            "\u0120wider",
            "<unk>",
        ]
        vocab_tokens = dict(zip(vocab, range(len(vocab))))
        merges = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""]
        self.special_tokens_map = {"unk_token": "<unk>"}

        bart_tokenizer_path = os.path.join(self.tmpdirname, "bart_tokenizer")
        os.makedirs(bart_tokenizer_path, exist_ok=True)
        self.vocab_file = os.path.join(bart_tokenizer_path, BART_VOCAB_FILES_NAMES["vocab_file"])
        self.merges_file = os.path.join(bart_tokenizer_path, BART_VOCAB_FILES_NAMES["merges_file"])
        with open(self.vocab_file, "w", encoding="utf-8") as fp:
            fp.write(json.dumps(vocab_tokens) + "\n")
        with open(self.merges_file, "w", encoding="utf-8") as fp:
            fp.write("\n".join(merges))

    def get_dpr_tokenizer(self) -> DPRQuestionEncoderTokenizer:
        return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname, "dpr_tokenizer"))

    def get_bart_tokenizer(self) -> BartTokenizer:
        return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname, "bart_tokenizer"))

    def tearDown(self):
        shutil.rmtree(self.tmpdirname)

98
    @require_tokenizers
Ola Piktus's avatar
Ola Piktus committed
99
100
101
102
103
104
105
106
    def test_save_load_pretrained_with_saved_config(self):

        save_dir = os.path.join(self.tmpdirname, "rag_tokenizer")
        rag_config = RagConfig(question_encoder=DPRConfig().to_dict(), generator=BartConfig().to_dict())
        rag_tokenizer = RagTokenizer(question_encoder=self.get_dpr_tokenizer(), generator=self.get_bart_tokenizer())
        rag_config.save_pretrained(save_dir)
        rag_tokenizer.save_pretrained(save_dir)
        new_rag_tokenizer = RagTokenizer.from_pretrained(save_dir, config=rag_config)
107
108
109
110
        self.assertIsInstance(new_rag_tokenizer.question_encoder, DPRQuestionEncoderTokenizerFast)
        self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab(), rag_tokenizer.question_encoder.get_vocab())
        self.assertIsInstance(new_rag_tokenizer.generator, BartTokenizerFast)
        self.assertEqual(new_rag_tokenizer.generator.get_vocab(), rag_tokenizer.generator.get_vocab())
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

    @slow
    def test_pretrained_token_nq_tokenizer(self):
        tokenizer = RagTokenizer.from_pretrained("facebook/rag-token-nq")
        input_strings = [
            "who got the first nobel prize in physics",
            "when is the next deadpool movie being released",
            "which mode is used for short wave broadcast service",
            "who is the owner of reading football club",
            "when is the next scandal episode coming out",
            "when is the last time the philadelphia won the superbowl",
            "what is the most current adobe flash player version",
            "how many episodes are there in dragon ball z",
            "what is the first step in the evolution of the eye",
            "where is gall bladder situated in human body",
            "what is the main mineral in lithium batteries",
            "who is the president of usa right now",
            "where do the greasers live in the outsiders",
            "panda is a national animal of which country",
            "what is the name of manchester united stadium",
        ]
        input_dict = tokenizer(input_strings)
        self.assertIsNotNone(input_dict)

    @slow
    def test_pretrained_sequence_nq_tokenizer(self):
        tokenizer = RagTokenizer.from_pretrained("facebook/rag-sequence-nq")
        input_strings = [
            "who got the first nobel prize in physics",
            "when is the next deadpool movie being released",
            "which mode is used for short wave broadcast service",
            "who is the owner of reading football club",
            "when is the next scandal episode coming out",
            "when is the last time the philadelphia won the superbowl",
            "what is the most current adobe flash player version",
            "how many episodes are there in dragon ball z",
            "what is the first step in the evolution of the eye",
            "where is gall bladder situated in human body",
            "what is the main mineral in lithium batteries",
            "who is the president of usa right now",
            "where do the greasers live in the outsiders",
            "panda is a national animal of which country",
            "what is the name of manchester united stadium",
        ]
        input_dict = tokenizer(input_strings)
        self.assertIsNotNone(input_dict)