test_modeling_fsmt.py 20.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2020 Huggingface
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import os
17
18
19
20
21
22
23
import tempfile
import unittest

import timeout_decorator  # noqa

from parameterized import parameterized
from transformers import is_torch_available
24
from transformers.file_utils import WEIGHTS_NAME, cached_property
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
from transformers.testing_utils import require_torch, slow, torch_device

from .test_configuration_common import ConfigTester
from .test_modeling_common import ModelTesterMixin, ids_tensor


if is_torch_available():
    import torch

    from transformers import FSMTConfig, FSMTForConditionalGeneration, FSMTModel, FSMTTokenizer
    from transformers.modeling_fsmt import (
        SinusoidalPositionalEmbedding,
        _prepare_fsmt_decoder_inputs,
        invert_mask,
        shift_tokens_right,
    )
41
    from transformers.pipelines import TranslationPipeline
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211


@require_torch
class ModelTester:
    def __init__(
        self,
        parent,
    ):
        self.parent = parent
        self.src_vocab_size = 99
        self.tgt_vocab_size = 99
        self.langs = ["ru", "en"]
        self.batch_size = 13
        self.seq_length = 7
        self.is_training = False
        self.use_labels = False
        self.hidden_size = 16
        self.num_hidden_layers = 2
        self.num_attention_heads = 4
        self.intermediate_size = 4
        self.hidden_act = "relu"
        self.hidden_dropout_prob = 0.1
        self.attention_probs_dropout_prob = 0.1
        self.max_position_embeddings = 20
        self.bos_token_id = 0
        self.pad_token_id = 1
        self.eos_token_id = 2
        torch.manual_seed(0)

        # hack needed for modeling_common tests - despite not really having this attribute in this model
        self.vocab_size = self.src_vocab_size

    def prepare_config_and_inputs_for_common(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.src_vocab_size).clamp(
            3,
        )
        input_ids[:, -1] = 2  # Eos Token

        config = FSMTConfig(
            vocab_size=self.src_vocab_size,  # hack needed for common tests
            src_vocab_size=self.src_vocab_size,
            tgt_vocab_size=self.tgt_vocab_size,
            langs=self.langs,
            d_model=self.hidden_size,
            encoder_layers=self.num_hidden_layers,
            decoder_layers=self.num_hidden_layers,
            encoder_attention_heads=self.num_attention_heads,
            decoder_attention_heads=self.num_attention_heads,
            encoder_ffn_dim=self.intermediate_size,
            decoder_ffn_dim=self.intermediate_size,
            dropout=self.hidden_dropout_prob,
            attention_dropout=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            eos_token_id=self.eos_token_id,
            bos_token_id=self.bos_token_id,
            pad_token_id=self.pad_token_id,
        )
        inputs_dict = prepare_fsmt_inputs_dict(config, input_ids)
        return config, inputs_dict


def prepare_fsmt_inputs_dict(
    config,
    input_ids,
    attention_mask=None,
):
    if attention_mask is None:
        attention_mask = input_ids.ne(config.pad_token_id)
    return {
        "input_ids": input_ids,
        "attention_mask": attention_mask,
    }


@require_torch
class FSMTModelTest(ModelTesterMixin, unittest.TestCase):
    all_model_classes = (FSMTModel, FSMTForConditionalGeneration) if is_torch_available() else ()
    all_generative_model_classes = (FSMTForConditionalGeneration,) if is_torch_available() else ()
    is_encoder_decoder = True
    # TODO(SS): fix the below in a separate PR
    test_pruning = False
    test_torchscript = True
    test_head_masking = False
    test_resize_embeddings = True  # This requires inputs_dict['input_ids']
    test_missing_keys = False  # because FSMTForConditionalGeneration and FSMTModel now have identical state_dict

    def setUp(self):
        self.model_tester = ModelTester(self)
        self.langs = ["en", "ru"]
        config = {
            "langs": self.langs,
            "src_vocab_size": 10,
            "tgt_vocab_size": 20,
        }
        # XXX: hack to appease to all other models requiring `vocab_size`
        config["vocab_size"] = 99  # no such thing in FSMT
        self.config_tester = ConfigTester(self, config_class=FSMTConfig, **config)

    def test_config(self):
        self.config_tester.run_common_tests()

    # XXX: override test_model_common_attributes / different Embedding type
    def test_model_common_attributes(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            self.assertIsInstance(model.get_input_embeddings(), (torch.nn.Embedding))
            model.set_input_embeddings(torch.nn.Embedding(10, 10))
            x = model.get_output_embeddings()
            self.assertTrue(x is None or isinstance(x, torch.nn.modules.sparse.Embedding))

    def test_initialization_more(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        model = FSMTModel(config)
        model.to(torch_device)
        model.eval()
        # test init
        # self.assertTrue((model.encoder.embed_tokens.weight == model.shared.weight).all().item())

        def _check_var(module):
            """Check that we initialized various parameters from N(0, config.init_std)."""
            self.assertAlmostEqual(torch.std(module.weight).item(), config.init_std, 2)

        _check_var(model.encoder.embed_tokens)
        _check_var(model.encoder.layers[0].self_attn.k_proj)
        _check_var(model.encoder.layers[0].fc1)
        # XXX: different std for fairseq version of SinusoidalPositionalEmbedding
        # self.assertAlmostEqual(torch.std(model.encoder.embed_positions.weights).item(), config.init_std, 2)

    def test_advanced_inputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.use_cache = False
        inputs_dict["input_ids"][:, -2:] = config.pad_token_id
        decoder_input_ids, decoder_attn_mask, causal_mask = _prepare_fsmt_decoder_inputs(
            config, inputs_dict["input_ids"]
        )
        model = FSMTModel(config).to(torch_device).eval()

        decoder_features_with_created_mask = model(**inputs_dict)[0]
        decoder_features_with_passed_mask = model(
            decoder_attention_mask=invert_mask(decoder_attn_mask), decoder_input_ids=decoder_input_ids, **inputs_dict
        )[0]
        _assert_tensors_equal(decoder_features_with_passed_mask, decoder_features_with_created_mask)
        useless_mask = torch.zeros_like(decoder_attn_mask)
        decoder_features = model(decoder_attention_mask=useless_mask, **inputs_dict)[0]
        self.assertTrue(isinstance(decoder_features, torch.Tensor))  # no hidden states or attentions
        self.assertEqual(
            decoder_features.size(),
            (self.model_tester.batch_size, self.model_tester.seq_length, config.tgt_vocab_size),
        )
        if decoder_attn_mask.min().item() < -1e3:  # some tokens were masked
            self.assertFalse((decoder_features_with_created_mask == decoder_features).all().item())

        # Test different encoder attention masks
        decoder_features_with_long_encoder_mask = model(
            inputs_dict["input_ids"], attention_mask=inputs_dict["attention_mask"].long()
        )[0]
        _assert_tensors_equal(decoder_features_with_long_encoder_mask, decoder_features_with_created_mask)

    def test_save_load_strict(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True)
            self.assertEqual(info["missing_keys"], [])

212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
    def test_save_load_no_save_keys(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            model = model_class(config)

            state_dict_no_save_keys = getattr(model, "state_dict_no_save_keys", None)
            if state_dict_no_save_keys is None:
                continue

            # check the keys are in the original state_dict
            for k in state_dict_no_save_keys:
                self.assertIn(k, model.state_dict())

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                output_model_file = os.path.join(tmpdirname, WEIGHTS_NAME)
                state_dict_saved = torch.load(output_model_file)
                for k in state_dict_no_save_keys:
                    self.assertNotIn(k, state_dict_saved)

233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
    @unittest.skip("can't be implemented for FSMT due to dual vocab.")
    def test_resize_tokens_embeddings(self):
        pass

    @unittest.skip("Passing inputs_embeds not implemented for FSMT.")
    def test_inputs_embeds(self):
        pass

    @unittest.skip("model weights aren't tied in FSMT.")
    def test_tie_model_weights(self):
        pass

    # def test_auto_model(self):
    #     # XXX: add a tiny model to s3?
    #     model_name = "facebook/wmt19-ru-en-tiny"
    #     tiny = AutoModel.from_pretrained(model_name)  # same vocab size
    #     tok = AutoTokenizer.from_pretrained(model_name)  # same tokenizer
    #     inputs_dict = tok.batch_encode_plus(["Hello my friends"], return_tensors="pt")

    #     with torch.no_grad():
    #         tiny(**inputs_dict)


@require_torch
class FSMTHeadTests(unittest.TestCase):
    src_vocab_size = 99
    tgt_vocab_size = 99
    langs = ["ru", "en"]

    def _get_config(self):
        return FSMTConfig(
            src_vocab_size=self.src_vocab_size,
            tgt_vocab_size=self.tgt_vocab_size,
            langs=self.langs,
            d_model=24,
            encoder_layers=2,
            decoder_layers=2,
            encoder_attention_heads=2,
            decoder_attention_heads=2,
            encoder_ffn_dim=32,
            decoder_ffn_dim=32,
            max_position_embeddings=48,
            eos_token_id=2,
            pad_token_id=1,
            bos_token_id=0,
            return_dict=True,
        )

    def _get_config_and_data(self):
        input_ids = torch.tensor(
            [
                [71, 82, 18, 33, 46, 91, 2],
                [68, 34, 26, 58, 30, 82, 2],
                [5, 97, 17, 39, 94, 40, 2],
                [76, 83, 94, 25, 70, 78, 2],
                [87, 59, 41, 35, 48, 66, 2],
                [55, 13, 16, 58, 5, 2, 1],  # note padding
                [64, 27, 31, 51, 12, 75, 2],
                [52, 64, 86, 17, 83, 39, 2],
                [48, 61, 9, 24, 71, 82, 2],
                [26, 1, 60, 48, 22, 13, 2],
                [21, 5, 62, 28, 14, 76, 2],
                [45, 98, 37, 86, 59, 48, 2],
                [70, 70, 50, 9, 28, 0, 2],
            ],
            dtype=torch.long,
            device=torch_device,
        )

        batch_size = input_ids.shape[0]
        config = self._get_config()
        return config, input_ids, batch_size

    def test_generate_beam_search(self):
        input_ids = torch.Tensor([[71, 82, 2], [68, 34, 2]]).long().to(torch_device)
        config = self._get_config()
        lm_model = FSMTForConditionalGeneration(config).to(torch_device)
        lm_model.eval()

        max_length = 5
        new_input_ids = lm_model.generate(
            input_ids.clone(),
            do_sample=True,
            num_return_sequences=1,
            num_beams=2,
            no_repeat_ngram_size=3,
            max_length=max_length,
        )
        self.assertEqual(new_input_ids.shape, (input_ids.shape[0], max_length))
        # TODO(SS): uneven length batches, empty inputs

    def test_shift_tokens_right(self):
        input_ids = torch.Tensor([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]]).long()
        shifted = shift_tokens_right(input_ids, 1)
        n_pad_before = input_ids.eq(1).float().sum()
        n_pad_after = shifted.eq(1).float().sum()
        self.assertEqual(shifted.shape, input_ids.shape)
        self.assertEqual(n_pad_after, n_pad_before - 1)
        self.assertTrue(torch.eq(shifted[:, 0], 2).all())

    def test_generate_fp16(self):
        config, input_ids, batch_size = self._get_config_and_data()
        attention_mask = input_ids.ne(1).to(torch_device)
        model = FSMTForConditionalGeneration(config).eval().to(torch_device)
        if torch_device == "cuda":
            model.half()
        model.generate(input_ids, attention_mask=attention_mask)
        model.generate(num_beams=4, do_sample=True, early_stopping=False, num_return_sequences=3)

    def test_dummy_inputs(self):
        config, *_ = self._get_config_and_data()
        model = FSMTForConditionalGeneration(config).eval().to(torch_device)
        model(**model.dummy_inputs)

    def test_prepare_fsmt_decoder_inputs(self):
        config, *_ = self._get_config_and_data()
        input_ids = _long_tensor(([4, 4, 2]))
        decoder_input_ids = _long_tensor([[26388, 2, config.pad_token_id]])
        ignore = float("-inf")
        decoder_input_ids, decoder_attn_mask, causal_mask = _prepare_fsmt_decoder_inputs(
            config, input_ids, decoder_input_ids
        )
        expected_causal_mask = torch.tensor(
            [[0, ignore, ignore], [0, 0, ignore], [0, 0, 0]]  # never attend to the final token, because its pad
        ).to(input_ids.device)
        self.assertEqual(decoder_attn_mask.size(), decoder_input_ids.size())
        self.assertTrue(torch.eq(expected_causal_mask, causal_mask).all())


def _assert_tensors_equal(a, b, atol=1e-12, prefix=""):
    """If tensors not close, or a and b arent both tensors, raise a nice Assertion error."""
    if a is None and b is None:
        return True
    try:
        if torch.allclose(a, b, atol=atol):
            return True
        raise
    except Exception:
        msg = "{} != {}".format(a, b)
        if prefix:
            msg = prefix + ": " + msg
        raise AssertionError(msg)


def _long_tensor(tok_lst):
    return torch.tensor(tok_lst, dtype=torch.long, device=torch_device)


TOLERANCE = 1e-4


384
385
386
387
388
389
390
391
pairs = [
    ["en-ru"],
    ["ru-en"],
    ["en-de"],
    ["de-en"],
]


392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
@require_torch
class FSMTModelIntegrationTests(unittest.TestCase):
    tokenizers_cache = {}
    models_cache = {}
    default_mname = "facebook/wmt19-en-ru"

    @cached_property
    def default_tokenizer(self):
        return self.get_tokenizer(self.default_mname)

    @cached_property
    def default_model(self):
        return self.get_model(self.default_mname)

    def get_tokenizer(self, mname):
        if mname not in self.tokenizers_cache:
            self.tokenizers_cache[mname] = FSMTTokenizer.from_pretrained(mname)
        return self.tokenizers_cache[mname]

    def get_model(self, mname):
        if mname not in self.models_cache:
            self.models_cache[mname] = FSMTForConditionalGeneration.from_pretrained(mname).to(torch_device)
            if torch_device == "cuda":
                self.models_cache[mname].half()
        return self.models_cache[mname]

    @slow
    def test_inference_no_head(self):
        tokenizer = self.default_tokenizer
        model = FSMTModel.from_pretrained(self.default_mname).to(torch_device)

        src_text = "My friend computer will translate this for me"
        input_ids = tokenizer([src_text], return_tensors="pt")["input_ids"]
425
        input_ids = _long_tensor(input_ids).to(torch_device)
426
427
428
429
430
431
432
433
434
        inputs_dict = prepare_fsmt_inputs_dict(model.config, input_ids)
        with torch.no_grad():
            output = model(**inputs_dict)[0]
        expected_shape = torch.Size((1, 10, model.config.tgt_vocab_size))
        self.assertEqual(output.shape, expected_shape)
        # expected numbers were generated when en-ru model, using just fairseq's model4.pt
        # may have to adjust if switched to a different checkpoint
        expected_slice = torch.tensor(
            [[-1.5753, -1.5753, 2.8975], [-0.9540, -0.9540, 1.0299], [-3.3131, -3.3131, 0.5219]]
435
        ).to(torch_device)
436
437
        self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=TOLERANCE))

438
    def translation_setup(self, pair):
439
440
441
442
443
444
445
446
447
448
        text = {
            "en": "Machine learning is great, isn't it?",
            "ru": "袦邪褕懈薪薪芯械 芯斜褍褔械薪懈械 - 褝褌芯 蟹写芯褉芯胁芯, 薪械 褌邪泻 谢懈?",
            "de": "Maschinelles Lernen ist gro脽artig, oder?",
        }

        src, tgt = pair.split("-")
        print(f"Testing {src} -> {tgt}")
        mname = f"facebook/wmt19-{pair}"

449
450
        src_text = text[src]
        tgt_text = text[tgt]
451
452
453

        tokenizer = self.get_tokenizer(mname)
        model = self.get_model(mname)
454
455
456
457
458
459
460
461
        return tokenizer, model, src_text, tgt_text

    @parameterized.expand(pairs)
    @slow
    def test_translation_direct(self, pair):
        tokenizer, model, src_text, tgt_text = self.translation_setup(pair)

        input_ids = tokenizer.encode(src_text, return_tensors="pt").to(torch_device)
462
463
464

        outputs = model.generate(input_ids)
        decoded = tokenizer.decode(outputs[0], skip_special_tokens=True)
465
466
467
468
469
470
471
472
473
474
        assert decoded == tgt_text, f"\n\ngot: {decoded}\nexp: {tgt_text}\n"

    @parameterized.expand(pairs)
    @slow
    def test_translation_pipeline(self, pair):
        tokenizer, model, src_text, tgt_text = self.translation_setup(pair)
        device = 0 if torch_device == "cuda" else -1
        pipeline = TranslationPipeline(model, tokenizer, framework="pt", device=device)
        output = pipeline([src_text])
        self.assertEqual([tgt_text], [x["translation_text"] for x in output])
475
476
477
478
479
480
481
482
483


@require_torch
class TestSinusoidalPositionalEmbeddings(unittest.TestCase):
    padding_idx = 1
    tolerance = 1e-4

    def test_basic(self):
        input_ids = torch.tensor([[4, 10]], dtype=torch.long, device=torch_device)
484
        emb1 = SinusoidalPositionalEmbedding(num_positions=6, embedding_dim=6, padding_idx=self.padding_idx).to(
485
486
487
488
489
490
491
492
            torch_device
        )
        emb = emb1(input_ids)
        desired_weights = torch.tensor(
            [
                [9.0930e-01, 1.9999e-02, 2.0000e-04, -4.1615e-01, 9.9980e-01, 1.0000e00],
                [1.4112e-01, 2.9995e-02, 3.0000e-04, -9.8999e-01, 9.9955e-01, 1.0000e00],
            ]
493
        ).to(torch_device)
494
495
496
497
498
499
500
        self.assertTrue(
            torch.allclose(emb[0], desired_weights, atol=self.tolerance),
            msg=f"\nexp:\n{desired_weights}\ngot:\n{emb[0]}\n",
        )

    def test_odd_embed_dim(self):
        # odd embedding_dim  is allowed
501
        SinusoidalPositionalEmbedding(num_positions=4, embedding_dim=5, padding_idx=self.padding_idx).to(torch_device)
502
503

        # odd num_embeddings is allowed
504
        SinusoidalPositionalEmbedding(num_positions=5, embedding_dim=4, padding_idx=self.padding_idx).to(torch_device)
505
506
507
508
509
510
511
512
513
514
515

    @unittest.skip("different from marian (needs more research)")
    def test_positional_emb_weights_against_marian(self):

        desired_weights = torch.tensor(
            [
                [0, 0, 0, 0, 0],
                [0.84147096, 0.82177866, 0.80180490, 0.78165019, 0.76140374],
                [0.90929741, 0.93651021, 0.95829457, 0.97505713, 0.98720258],
            ]
        )
516
        emb1 = SinusoidalPositionalEmbedding(num_positions=512, embedding_dim=512, padding_idx=self.padding_idx).to(
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
            torch_device
        )
        weights = emb1.weights.data[:3, :5]
        # XXX: only the 1st and 3rd lines match - this is testing against
        # verbatim copy of SinusoidalPositionalEmbedding from fairseq
        self.assertTrue(
            torch.allclose(weights, desired_weights, atol=self.tolerance),
            msg=f"\nexp:\n{desired_weights}\ngot:\n{weights}\n",
        )

        # test that forward pass is just a lookup, there is no ignore padding logic
        input_ids = torch.tensor(
            [[4, 10, self.padding_idx, self.padding_idx, self.padding_idx]], dtype=torch.long, device=torch_device
        )
        no_cache_pad_zero = emb1(input_ids)[0]
        # XXX: only the 1st line matches the 3rd
        self.assertTrue(
            torch.allclose(torch.tensor(desired_weights, device=torch_device), no_cache_pad_zero[:3, :5], atol=1e-3)
        )