audio_classification.mdx 11.8 KB
Newer Older
Steven Liu's avatar
Steven Liu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
<!--Copyright 2022 The HuggingFace Team. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->

# Audio classification

<Youtube id="KWwzcmG98Ds"/>

17
Audio classification - just like with text - assigns a class label output from the input data. The only difference is instead of text inputs, you have raw audio waveforms. Some practical applications of audio classification include identifying speaker intent, language classification, and even animal species by their sounds.
Steven Liu's avatar
Steven Liu committed
18

19
20
21
22
This guide will show you how to:

1. Finetune [Wav2Vec2](https://huggingface.co/facebook/wav2vec2-base) on the [MInDS-14](https://huggingface.co/datasets/PolyAI/minds14) dataset to classify speaker intent.
2. Use your finetuned model for inference.
Steven Liu's avatar
Steven Liu committed
23
24
25
26
27
28
29

<Tip>

See the audio classification [task page](https://huggingface.co/tasks/audio-classification) for more information about its associated models, datasets, and metrics.

</Tip>

30
31
32
33
34
35
36
37
38
39
40
41
42
43
Before you begin, make sure you have all the necessary libraries installed:

```bash
pip install transformers datasets evaluate
```

We encourage you to login to your Hugging Face account so you can upload and share your model with the community. When prompted, enter your token to login:

```py
>>> from huggingface_hub import notebook_login

>>> notebook_login()
```

44
## Load MInDS-14 dataset
Steven Liu's avatar
Steven Liu committed
45

46
Start by loading the MInDS-14 dataset from the 馃 Datasets library:
Steven Liu's avatar
Steven Liu committed
47
48

```py
49
>>> from datasets import load_dataset, Audio
Steven Liu's avatar
Steven Liu committed
50

51
>>> minds = load_dataset("PolyAI/minds14", name="en-US", split="train")
Steven Liu's avatar
Steven Liu committed
52
53
```

54
Split the dataset's `train` split into a smaller train and test set with the [`~datasets.Dataset.train_test_split`] method. This'll give you a chance to experiment and make sure everything works before spending more time on the full dataset.
Steven Liu's avatar
Steven Liu committed
55
56

```py
57
>>> minds = minds.train_test_split(test_size=0.2)
Steven Liu's avatar
Steven Liu committed
58
59
```

60
Then take a look at the dataset:
Steven Liu's avatar
Steven Liu committed
61
62

```py
63
64
65
66
67
68
69
70
71
72
73
74
75
>>> minds
DatasetDict({
    train: Dataset({
        features: ['path', 'audio', 'transcription', 'english_transcription', 'intent_class', 'lang_id'],
        num_rows: 450
    })
    test: Dataset({
        features: ['path', 'audio', 'transcription', 'english_transcription', 'intent_class', 'lang_id'],
        num_rows: 113
    })
})
```

76
While the dataset contains a lot of useful information, like `lang_id` and `english_transcription`, you'll focus on the `audio` and `intent_class` in this guide. Remove the other columns with the [`~datasets.Dataset.remove_columns`] method:
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

```py
>>> minds = minds.remove_columns(["path", "transcription", "english_transcription", "lang_id"])
```

Take a look at an example now:

```py
>>> minds["train"][0]
{'audio': {'array': array([ 0.        ,  0.        ,  0.        , ..., -0.00048828,
         -0.00024414, -0.00024414], dtype=float32),
  'path': '/root/.cache/huggingface/datasets/downloads/extracted/f14948e0e84be638dd7943ac36518a4cf3324e8b7aa331c5ab11541518e9368c/en-US~APP_ERROR/602b9a5fbb1e6d0fbce91f52.wav',
  'sampling_rate': 8000},
 'intent_class': 2}
```

93
94
95
96
97
98
There are two fields:

- `audio`: a 1-dimensional `array` of the speech signal that must be called to load and resample the audio file. 
- `intent_class`: represents the class id of the speaker's intent. 

To make it easier for the model to get the label name from the label id, create a dictionary that maps the label name to an integer and vice versa:
99
100
101

```py
>>> labels = minds["train"].features["intent_class"].names
Steven Liu's avatar
Steven Liu committed
102
103
104
105
106
107
>>> label2id, id2label = dict(), dict()
>>> for i, label in enumerate(labels):
...     label2id[label] = str(i)
...     id2label[str(i)] = label
```

108
Now you can convert the label id to a label name:
Steven Liu's avatar
Steven Liu committed
109
110

```py
111
112
>>> id2label[str(2)]
'app_error'
Steven Liu's avatar
Steven Liu committed
113
114
115
116
```

## Preprocess

117
The next step is to load a Wav2Vec2 feature extractor to process the audio signal:
Steven Liu's avatar
Steven Liu committed
118
119
120
121
122
123
124

```py
>>> from transformers import AutoFeatureExtractor

>>> feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base")
```

125
The MInDS-14 dataset has a sampling rate of 8000khz (you can find this information in it's [dataset card](https://huggingface.co/datasets/PolyAI/minds14)), which means you'll need to resample the dataset to 16000kHz to use the pretrained Wav2Vec2 model:
126
127
128
129
130
131
132
133
134
135
136

```py
>>> minds = minds.cast_column("audio", Audio(sampling_rate=16_000))
>>> minds["train"][0]
{'audio': {'array': array([ 2.2098757e-05,  4.6582241e-05, -2.2803260e-05, ...,
         -2.8419291e-04, -2.3305941e-04, -1.1425107e-04], dtype=float32),
  'path': '/root/.cache/huggingface/datasets/downloads/extracted/f14948e0e84be638dd7943ac36518a4cf3324e8b7aa331c5ab11541518e9368c/en-US~APP_ERROR/602b9a5fbb1e6d0fbce91f52.wav',
  'sampling_rate': 16000},
 'intent_class': 2}
```

137
Now create a preprocessing function that:
Steven Liu's avatar
Steven Liu committed
138

139
140
141
1. Calls the `audio` column to load, and if necessary, resample the audio file.
2. Checks if the sampling rate of the audio file matches the sampling rate of the audio data a model was pretrained with. You can find this information in the Wav2Vec2 [model card](https://huggingface.co/facebook/wav2vec2-base).
3. Set a maximum input length to batch longer inputs without truncating them.
Steven Liu's avatar
Steven Liu committed
142
143
144
145
146
147
148
149
150
151

```py
>>> def preprocess_function(examples):
...     audio_arrays = [x["array"] for x in examples["audio"]]
...     inputs = feature_extractor(
...         audio_arrays, sampling_rate=feature_extractor.sampling_rate, max_length=16000, truncation=True
...     )
...     return inputs
```

152
To apply the preprocessing function over the entire dataset, use 馃 Datasets [`~datasets.Dataset.map`] function. You can speed up `map` by setting `batched=True` to process multiple elements of the dataset at once. Remove the columns you don't need, and rename `intent_class` to `label` because that's the name the model expects:
Steven Liu's avatar
Steven Liu committed
153
154

```py
155
156
>>> encoded_minds = minds.map(preprocess_function, remove_columns="audio", batched=True)
>>> encoded_minds = encoded_minds.rename_column("intent_class", "label")
Steven Liu's avatar
Steven Liu committed
157
158
```

159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
## Evaluate

Including a metric during training is often helpful for evaluating your model's performance. You can quickly load a evaluation method with the 馃 [Evaluate](https://huggingface.co/docs/evaluate/index) library. For this task, load the [accuracy](https://huggingface.co/spaces/evaluate-metric/accuracy) metric (see the 馃 Evaluate [quick tour](https://huggingface.co/docs/evaluate/a_quick_tour) to learn more about how to load and compute a metric):

```py
>>> import evaluate

>>> accuracy = evaluate.load("accuracy")
```

Then create a function that passes your predictions and labels to [`~evaluate.EvaluationModule.compute`] to calculate the accuracy:

```py
>>> import numpy as np


>>> def compute_metrics(eval_pred):
...     predictions = np.argmax(eval_pred.predictions, axis=1)
...     return accuracy.compute(predictions=predictions, references=eval_pred.label_ids)
```

Your `compute_metrics` function is ready to go now, and you'll return to it when you setup your training.

182
## Train
Steven Liu's avatar
Steven Liu committed
183

184
185
<frameworkcontent>
<pt>
186
187
188
189
190
191
<Tip>

If you aren't familiar with finetuning a model with the [`Trainer`], take a look at the basic tutorial [here](../training#train-with-pytorch-trainer)!

</Tip>
You're ready to start training your model now! Load Wav2Vec2 with [`AutoModelForAudioClassification`] along with the number of expected labels, and the label mappings:
Steven Liu's avatar
Steven Liu committed
192
193
194
195
196
197
198
199
200
201
202
203

```py
>>> from transformers import AutoModelForAudioClassification, TrainingArguments, Trainer

>>> num_labels = len(id2label)
>>> model = AutoModelForAudioClassification.from_pretrained(
...     "facebook/wav2vec2-base", num_labels=num_labels, label2id=label2id, id2label=id2label
... )
```

At this point, only three steps remain:

204
205
206
207
1. Define your training hyperparameters in [`TrainingArguments`]. The only required parameter is `output_dir` which specifies where to save your model. You'll push this model to the Hub by setting `push_to_hub=True` (you need to be signed in to Hugging Face to upload your model). At the end of each epoch, the [`Trainer`] will evaluate the accuracy and save the training checkpoint.
2. Pass the training arguments to [`Trainer`] along with the model, dataset, tokenizer, data collator, and `compute_metrics` function.
3. Call [`~Trainer.train`] to finetune your model.

Steven Liu's avatar
Steven Liu committed
208
209
210

```py
>>> training_args = TrainingArguments(
211
...     output_dir="my_awesome_mind_model",
Steven Liu's avatar
Steven Liu committed
212
213
214
...     evaluation_strategy="epoch",
...     save_strategy="epoch",
...     learning_rate=3e-5,
215
216
217
218
219
220
221
222
223
...     per_device_train_batch_size=32,
...     gradient_accumulation_steps=4,
...     per_device_eval_batch_size=32,
...     num_train_epochs=10,
...     warmup_ratio=0.1,
...     logging_steps=10,
...     load_best_model_at_end=True,
...     metric_for_best_model="accuracy",
...     push_to_hub=True,
Steven Liu's avatar
Steven Liu committed
224
225
226
227
228
... )

>>> trainer = Trainer(
...     model=model,
...     args=training_args,
229
230
...     train_dataset=encoded_minds["train"],
...     eval_dataset=encoded_minds["test"],
Steven Liu's avatar
Steven Liu committed
231
...     tokenizer=feature_extractor,
232
...     compute_metrics=compute_metrics,
Steven Liu's avatar
Steven Liu committed
233
234
235
236
... )

>>> trainer.train()
```
237
238
239
240
241
242

Once training is completed, share your model to the Hub with the [`~transformers.Trainer.push_to_hub`] method so everyone can use your model:

```py
>>> trainer.push_to_hub()
```
243
244
</pt>
</frameworkcontent>
Steven Liu's avatar
Steven Liu committed
245
246
247

<Tip>

248
For a more in-depth example of how to finetune a model for audio classification, take a look at the corresponding [PyTorch notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/audio_classification.ipynb).
Steven Liu's avatar
Steven Liu committed
249

250
</Tip>
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317

## Inference

Great, now that you've finetuned a model, you can use it for inference!

Load an audio file you'd like to run inference on. Remember to resample the sampling rate of the audio file to match the sampling rate of the model if you need to!

```py
>>> from datasets import load_dataset, Audio

>>> dataset = load_dataset("PolyAI/minds14", name="en-US", split="train")
>>> dataset = dataset.cast_column("audio", Audio(sampling_rate=16000))
>>> sampling_rate = dataset.features["audio"].sampling_rate
>>> audio_file = dataset[0]["audio"]["path"]
```

The simplest way to try out your finetuned model for inference is to use it in a [`pipeline`]. Instantiate a `pipeline` for audio classification with your model, and pass your audio file to it:

```py
>>> from transformers import pipeline

>>> classifier = pipeline("audio-classification", model="stevhliu/my_awesome_minds_model")
>>> classifier(audio_file)
[
    {'score': 0.09766869246959686, 'label': 'cash_deposit'},
    {'score': 0.07998877018690109, 'label': 'app_error'},
    {'score': 0.0781070664525032, 'label': 'joint_account'},
    {'score': 0.07667109370231628, 'label': 'pay_bill'},
    {'score': 0.0755252093076706, 'label': 'balance'}
]
```

You can also manually replicate the results of the `pipeline` if you'd like:

<frameworkcontent>
<pt>
Load a feature extractor to preprocess the audio file and return the `input` as PyTorch tensors:

```py
>>> from transformers import AutoFeatureExtractor

>>> feature_extractor = AutoFeatureExtractor.from_pretrained("stevhliu/my_awesome_minds_model")
>>> inputs = feature_extractor(dataset[0]["audio"]["array"], sampling_rate=sampling_rate, return_tensors="pt")
```

Pass your inputs to the model and return the logits:

```py
>>> from transformers import AutoModelForAudioClassification

>>> model = AutoModelForAudioClassification.from_pretrained("stevhliu/my_awesome_minds_model")
>>> with torch.no_grad():
...     logits = model(**inputs).logits
```

Get the class with the highest probability, and use the model's `id2label` mapping to convert it to a label:

```py
>>> import torch

>>> predicted_class_ids = torch.argmax(logits).item()
>>> predicted_label = model.config.id2label[predicted_class_ids]
>>> predicted_label
'cash_deposit'
```
</pt>
</frameworkcontent>