test_modeling_longformer.py 9.81 KB
Newer Older
Iz Beltagy's avatar
Iz Beltagy committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

from transformers import is_torch_available

from .test_configuration_common import ConfigTester
from .test_modeling_common import ModelTesterMixin, ids_tensor
from .utils import require_torch, slow, torch_device


if is_torch_available():
    import torch
    from transformers import (
        LongformerConfig,
        LongformerModel,
        LongformerForMaskedLM,
    )


class LongformerModelTester(object):
    def __init__(
        self,
        parent,
        batch_size=13,
        seq_length=7,
        is_training=True,
        use_input_mask=True,
        use_token_type_ids=True,
        use_labels=True,
        vocab_size=99,
        hidden_size=32,
        num_hidden_layers=5,
        num_attention_heads=4,
        intermediate_size=37,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=512,
        type_vocab_size=16,
        type_sequence_label_size=2,
        initializer_range=0.02,
        num_labels=3,
        num_choices=4,
        scope=None,
        attention_window=4,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_input_mask = use_input_mask
        self.use_token_type_ids = use_token_type_ids
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.type_vocab_size = type_vocab_size
        self.type_sequence_label_size = type_sequence_label_size
        self.initializer_range = initializer_range
        self.num_labels = num_labels
        self.num_choices = num_choices
        self.scope = scope
        self.attention_window = attention_window

        # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size
        # [num_attention_heads, encoder_seq_length, encoder_key_length], but LongformerSelfAttention
        # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1]
        # because its local attention only attends to `self.attention_window + 1` locations
        self.key_length = self.attention_window + 1

        # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for
        # the `test_attention_outputs` and `test_hidden_states_output` tests
        self.encoder_seq_length = (
            self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window
        )

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
            input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

        config = LongformerConfig(
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            type_vocab_size=self.type_vocab_size,
            initializer_range=self.initializer_range,
            attention_window=self.attention_window,
        )

        return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels

    def check_loss_output(self, result):
        self.parent.assertListEqual(list(result["loss"].size()), [])

    def create_and_check_longformer_model(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = LongformerModel(config=config)
        model.to(torch_device)
        model.eval()
        sequence_output, pooled_output = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
        sequence_output, pooled_output = model(input_ids, token_type_ids=token_type_ids)
        sequence_output, pooled_output = model(input_ids)

        result = {
            "sequence_output": sequence_output,
            "pooled_output": pooled_output,
        }
        self.parent.assertListEqual(
            list(result["sequence_output"].size()), [self.batch_size, self.seq_length, self.hidden_size]
        )
        self.parent.assertListEqual(list(result["pooled_output"].size()), [self.batch_size, self.hidden_size])

    def create_and_check_longformer_for_masked_lm(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = LongformerForMaskedLM(config=config)
        model.to(torch_device)
        model.eval()
        loss, prediction_scores = model(
            input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, masked_lm_labels=token_labels
        )
        result = {
            "loss": loss,
            "prediction_scores": prediction_scores,
        }
        self.parent.assertListEqual(
            list(result["prediction_scores"].size()), [self.batch_size, self.seq_length, self.vocab_size]
        )
        self.check_loss_output(result)

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs
        inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
        return config, inputs_dict


@require_torch
class LongformerModelTest(ModelTesterMixin, unittest.TestCase):
    test_pruning = False  # pruning is not supported
    test_headmasking = False  # head masking is not supported
    test_torchscript = False

    all_model_classes = (LongformerForMaskedLM, LongformerModel) if is_torch_available() else ()

    def setUp(self):
        self.model_tester = LongformerModelTester(self)
        self.config_tester = ConfigTester(self, config_class=LongformerConfig, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_longformer_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_longformer_model(*config_and_inputs)

    def test_longformer_for_masked_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_longformer_for_masked_lm(*config_and_inputs)


class LongformerModelIntegrationTest(unittest.TestCase):
    @slow
    def test_inference_no_head(self):
        model = LongformerModel.from_pretrained("longformer-base-4096")

        # 'Hello world! ' repeated 1000 times
        input_ids = torch.tensor([[0] + [20920, 232, 328, 1437] * 1000 + [2]])  # long input

        attention_mask = torch.ones(input_ids.shape, dtype=torch.long, device=input_ids.device)
        attention_mask[:, [1, 4, 21]] = 2  # Set global attention on a few random positions

        output = model(input_ids, attention_mask=attention_mask)[0]

        expected_output_sum = torch.tensor(74585.8594)
        expected_output_mean = torch.tensor(0.0243)
        self.assertTrue(torch.allclose(output.sum(), expected_output_sum, atol=1e-4))
        self.assertTrue(torch.allclose(output.mean(), expected_output_mean, atol=1e-4))

    @slow
    def test_inference_masked_lm(self):
        model = LongformerForMaskedLM.from_pretrained("longformer-base-4096")

        # 'Hello world! ' repeated 1000 times
        input_ids = torch.tensor([[0] + [20920, 232, 328, 1437] * 1000 + [2]])  # long input

        loss, prediction_scores = model(input_ids, masked_lm_labels=input_ids)

        expected_loss = torch.tensor(0.0620)
        expected_prediction_scores_sum = torch.tensor(-6.1599e08)
        expected_prediction_scores_mean = torch.tensor(-3.0622)

        self.assertTrue(torch.allclose(loss, expected_loss, atol=1e-4))
        self.assertTrue(torch.allclose(prediction_scores.sum(), expected_prediction_scores_sum, atol=1e-4))
        self.assertTrue(torch.allclose(prediction_scores.mean(), expected_prediction_scores_mean, atol=1e-4))