test_peft_integration.py 20.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import tempfile
import unittest

19
20
from huggingface_hub import hf_hub_download

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
from transformers import AutoModelForCausalLM, OPTForCausalLM
from transformers.testing_utils import require_peft, require_torch, require_torch_gpu, slow, torch_device
from transformers.utils import is_torch_available


if is_torch_available():
    import torch


@require_peft
@require_torch
class PeftTesterMixin:
    peft_test_model_ids = ("peft-internal-testing/tiny-OPTForCausalLM-lora",)
    transformers_test_model_ids = ("hf-internal-testing/tiny-random-OPTForCausalLM",)
    transformers_test_model_classes = (AutoModelForCausalLM, OPTForCausalLM)


# TODO: run it with CI after PEFT release.
@slow
class PeftIntegrationTester(unittest.TestCase, PeftTesterMixin):
    """
    A testing suite that makes sure that the PeftModel class is correctly integrated into the transformers library.
    """

    def _check_lora_correctly_converted(self, model):
        """
        Utility method to check if the model has correctly adapters injected on it.
        """
        from peft.tuners.tuners_utils import BaseTunerLayer

        is_peft_loaded = False

        for _, m in model.named_modules():
            if isinstance(m, BaseTunerLayer):
                is_peft_loaded = True
                break

        return is_peft_loaded

    def test_peft_from_pretrained(self):
        """
        Simple test that tests the basic usage of PEFT model through `from_pretrained`.
        This checks if we pass a remote folder that contains an adapter config and adapter weights, it
        should correctly load a model that has adapters injected on it.
        """
        for model_id in self.peft_test_model_ids:
            for transformers_class in self.transformers_test_model_classes:
                peft_model = transformers_class.from_pretrained(model_id).to(torch_device)

                self.assertTrue(self._check_lora_correctly_converted(peft_model))
                self.assertTrue(peft_model._hf_peft_config_loaded)
                # dummy generation
                _ = peft_model.generate(input_ids=torch.LongTensor([[0, 1, 2, 3, 4, 5, 6, 7]]).to(torch_device))

    def test_peft_state_dict(self):
        """
        Simple test that checks if the returned state dict of `get_adapter_state_dict()` method contains
        the expected keys.
        """
        for model_id in self.peft_test_model_ids:
            for transformers_class in self.transformers_test_model_classes:
                peft_model = transformers_class.from_pretrained(model_id).to(torch_device)

                state_dict = peft_model.get_adapter_state_dict()

                for key in state_dict.keys():
                    self.assertTrue("lora" in key)

    def test_peft_save_pretrained(self):
        """
        Test that checks various combinations of `save_pretrained` with a model that has adapters loaded
        on it. This checks if the saved model contains the expected files (adapter weights and adapter config).
        """
        for model_id in self.peft_test_model_ids:
            for transformers_class in self.transformers_test_model_classes:
                peft_model = transformers_class.from_pretrained(model_id).to(torch_device)

                with tempfile.TemporaryDirectory() as tmpdirname:
                    peft_model.save_pretrained(tmpdirname)

101
                    self.assertTrue("adapter_model.safetensors" in os.listdir(tmpdirname))
102
103
104
105
                    self.assertTrue("adapter_config.json" in os.listdir(tmpdirname))

                    self.assertTrue("config.json" not in os.listdir(tmpdirname))
                    self.assertTrue("pytorch_model.bin" not in os.listdir(tmpdirname))
106
                    self.assertTrue("model.safetensors" not in os.listdir(tmpdirname))
107
108
109
110

                    peft_model = transformers_class.from_pretrained(tmpdirname).to(torch_device)
                    self.assertTrue(self._check_lora_correctly_converted(peft_model))

111
112
                    peft_model.save_pretrained(tmpdirname, safe_serialization=False)
                    self.assertTrue("adapter_model.bin" in os.listdir(tmpdirname))
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
                    self.assertTrue("adapter_config.json" in os.listdir(tmpdirname))

                    peft_model = transformers_class.from_pretrained(tmpdirname).to(torch_device)
                    self.assertTrue(self._check_lora_correctly_converted(peft_model))

    def test_peft_enable_disable_adapters(self):
        """
        A test that checks if `enable_adapters` and `disable_adapters` methods work as expected.
        """
        from peft import LoraConfig

        dummy_input = torch.LongTensor([[0, 1, 2, 3, 4, 5, 6, 7]]).to(torch_device)

        for model_id in self.transformers_test_model_ids:
            for transformers_class in self.transformers_test_model_classes:
                peft_model = transformers_class.from_pretrained(model_id).to(torch_device)

                peft_config = LoraConfig(init_lora_weights=False)

                peft_model.add_adapter(peft_config)

                peft_logits = peft_model(dummy_input).logits

                peft_model.disable_adapters()

                peft_logits_disabled = peft_model(dummy_input).logits

                peft_model.enable_adapters()

                peft_logits_enabled = peft_model(dummy_input).logits

                self.assertTrue(torch.allclose(peft_logits, peft_logits_enabled, atol=1e-12, rtol=1e-12))
                self.assertFalse(torch.allclose(peft_logits_enabled, peft_logits_disabled, atol=1e-12, rtol=1e-12))

    def test_peft_add_adapter(self):
        """
        Simple test that tests if `add_adapter` works as expected
        """
        from peft import LoraConfig

        for model_id in self.transformers_test_model_ids:
            for transformers_class in self.transformers_test_model_classes:
                model = transformers_class.from_pretrained(model_id).to(torch_device)

                peft_config = LoraConfig(init_lora_weights=False)

                model.add_adapter(peft_config)

                self.assertTrue(self._check_lora_correctly_converted(model))
                # dummy generation
                _ = model.generate(input_ids=torch.LongTensor([[0, 1, 2, 3, 4, 5, 6, 7]]).to(torch_device))

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
    def test_peft_add_adapter_from_pretrained(self):
        """
        Simple test that tests if `add_adapter` works as expected
        """
        from peft import LoraConfig

        for model_id in self.transformers_test_model_ids:
            for transformers_class in self.transformers_test_model_classes:
                model = transformers_class.from_pretrained(model_id).to(torch_device)

                peft_config = LoraConfig(init_lora_weights=False)

                model.add_adapter(peft_config)

                self.assertTrue(self._check_lora_correctly_converted(model))
                with tempfile.TemporaryDirectory() as tmpdirname:
                    model.save_pretrained(tmpdirname)
                    model_from_pretrained = transformers_class.from_pretrained(tmpdirname).to(torch_device)
                    self.assertTrue(self._check_lora_correctly_converted(model_from_pretrained))

185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
    def test_peft_add_adapter_training_gradient_checkpointing(self):
        """
        Simple test that tests if `add_adapter` works as expected when training with
        gradient checkpointing.
        """
        from peft import LoraConfig

        for model_id in self.transformers_test_model_ids:
            for transformers_class in self.transformers_test_model_classes:
                model = transformers_class.from_pretrained(model_id).to(torch_device)

                peft_config = LoraConfig(init_lora_weights=False)

                model.add_adapter(peft_config)

                self.assertTrue(self._check_lora_correctly_converted(model))

                # When attaching adapters the input embeddings will stay frozen, this will
                # lead to the output embedding having requires_grad=False.
                dummy_input = torch.LongTensor([[0, 1, 2, 3, 4, 5, 6, 7]]).to(torch_device)
                frozen_output = model.get_input_embeddings()(dummy_input)
                self.assertTrue(frozen_output.requires_grad is False)

                model.gradient_checkpointing_enable()

                # Since here we attached the hook, the input should have requires_grad to set
                # properly
                non_frozen_output = model.get_input_embeddings()(dummy_input)
                self.assertTrue(non_frozen_output.requires_grad is True)

                # To repro the Trainer issue
                dummy_input.requires_grad = False

                for name, param in model.named_parameters():
                    if "lora" in name.lower():
                        self.assertTrue(param.requires_grad)

                logits = model(dummy_input).logits
                loss = logits.mean()
                loss.backward()

                for name, param in model.named_parameters():
                    if param.requires_grad:
                        self.assertTrue("lora" in name.lower())
                        self.assertTrue(param.grad is not None)

231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
    def test_peft_add_multi_adapter(self):
        """
        Simple test that tests the basic usage of PEFT model through `from_pretrained`. This test tests if
        add_adapter works as expected in multi-adapter setting.
        """
        from peft import LoraConfig
        from peft.tuners.tuners_utils import BaseTunerLayer

        dummy_input = torch.LongTensor([[0, 1, 2, 3, 4, 5, 6, 7]]).to(torch_device)

        for model_id in self.transformers_test_model_ids:
            for transformers_class in self.transformers_test_model_classes:
                is_peft_loaded = False
                model = transformers_class.from_pretrained(model_id).to(torch_device)

                logits_original_model = model(dummy_input).logits

                peft_config = LoraConfig(init_lora_weights=False)

                model.add_adapter(peft_config)

                logits_adapter_1 = model(dummy_input)

                model.add_adapter(peft_config, adapter_name="adapter-2")

                logits_adapter_2 = model(dummy_input)

                for _, m in model.named_modules():
                    if isinstance(m, BaseTunerLayer):
                        is_peft_loaded = True
                        break

                self.assertTrue(is_peft_loaded)

                # dummy generation
                _ = model.generate(input_ids=dummy_input)

                model.set_adapter("default")
269
                self.assertTrue(model.active_adapters() == ["default"])
270
271
272
                self.assertTrue(model.active_adapter() == "default")

                model.set_adapter("adapter-2")
273
                self.assertTrue(model.active_adapters() == ["adapter-2"])
274
275
276
277
278
279
280
281
                self.assertTrue(model.active_adapter() == "adapter-2")

                # Logits comparison
                self.assertFalse(
                    torch.allclose(logits_adapter_1.logits, logits_adapter_2.logits, atol=1e-6, rtol=1e-6)
                )
                self.assertFalse(torch.allclose(logits_original_model, logits_adapter_2.logits, atol=1e-6, rtol=1e-6))

282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
                model.set_adapter(["adapter-2", "default"])
                self.assertTrue(model.active_adapters() == ["adapter-2", "default"])
                self.assertTrue(model.active_adapter() == "adapter-2")

                logits_adapter_mixed = model(dummy_input)
                self.assertFalse(
                    torch.allclose(logits_adapter_1.logits, logits_adapter_mixed.logits, atol=1e-6, rtol=1e-6)
                )

                self.assertFalse(
                    torch.allclose(logits_adapter_2.logits, logits_adapter_mixed.logits, atol=1e-6, rtol=1e-6)
                )

                # multi active adapter saving not supported
                with self.assertRaises(ValueError), tempfile.TemporaryDirectory() as tmpdirname:
                    model.save_pretrained(tmpdirname)

299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
    @require_torch_gpu
    def test_peft_from_pretrained_kwargs(self):
        """
        Simple test that tests the basic usage of PEFT model through `from_pretrained` + additional kwargs
        and see if the integraiton behaves as expected.
        """
        for model_id in self.peft_test_model_ids:
            for transformers_class in self.transformers_test_model_classes:
                peft_model = transformers_class.from_pretrained(model_id, load_in_8bit=True, device_map="auto")

                module = peft_model.model.decoder.layers[0].self_attn.v_proj
                self.assertTrue(module.__class__.__name__ == "Linear8bitLt")
                self.assertTrue(peft_model.hf_device_map is not None)

                # dummy generation
                _ = peft_model.generate(input_ids=torch.LongTensor([[0, 1, 2, 3, 4, 5, 6, 7]]).to(torch_device))

Younes Belkada's avatar
Younes Belkada committed
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
    @require_torch_gpu
    def test_peft_save_quantized(self):
        """
        Simple test that tests the basic usage of PEFT model save_pretrained with quantized base models
        """
        # 4bit
        for model_id in self.peft_test_model_ids:
            for transformers_class in self.transformers_test_model_classes:
                peft_model = transformers_class.from_pretrained(model_id, load_in_4bit=True, device_map="auto")

                module = peft_model.model.decoder.layers[0].self_attn.v_proj
                self.assertTrue(module.__class__.__name__ == "Linear4bit")
                self.assertTrue(peft_model.hf_device_map is not None)

                with tempfile.TemporaryDirectory() as tmpdirname:
                    peft_model.save_pretrained(tmpdirname)
332
                    self.assertTrue("adapter_model.safetensors" in os.listdir(tmpdirname))
Younes Belkada's avatar
Younes Belkada committed
333
334
                    self.assertTrue("adapter_config.json" in os.listdir(tmpdirname))
                    self.assertTrue("pytorch_model.bin" not in os.listdir(tmpdirname))
335
                    self.assertTrue("model.safetensors" not in os.listdir(tmpdirname))
Younes Belkada's avatar
Younes Belkada committed
336
337
338
339
340
341
342
343
344
345
346
347
348

        # 8-bit
        for model_id in self.peft_test_model_ids:
            for transformers_class in self.transformers_test_model_classes:
                peft_model = transformers_class.from_pretrained(model_id, load_in_8bit=True, device_map="auto")

                module = peft_model.model.decoder.layers[0].self_attn.v_proj
                self.assertTrue(module.__class__.__name__ == "Linear8bitLt")
                self.assertTrue(peft_model.hf_device_map is not None)

                with tempfile.TemporaryDirectory() as tmpdirname:
                    peft_model.save_pretrained(tmpdirname)

349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
                    self.assertTrue("adapter_model.safetensors" in os.listdir(tmpdirname))
                    self.assertTrue("adapter_config.json" in os.listdir(tmpdirname))
                    self.assertTrue("pytorch_model.bin" not in os.listdir(tmpdirname))
                    self.assertTrue("model.safetensors" not in os.listdir(tmpdirname))

    @require_torch_gpu
    def test_peft_save_quantized_regression(self):
        """
        Simple test that tests the basic usage of PEFT model save_pretrained with quantized base models
        Regression test to make sure everything works as expected before the safetensors integration.
        """
        # 4bit
        for model_id in self.peft_test_model_ids:
            for transformers_class in self.transformers_test_model_classes:
                peft_model = transformers_class.from_pretrained(model_id, load_in_4bit=True, device_map="auto")

                module = peft_model.model.decoder.layers[0].self_attn.v_proj
                self.assertTrue(module.__class__.__name__ == "Linear4bit")
                self.assertTrue(peft_model.hf_device_map is not None)

                with tempfile.TemporaryDirectory() as tmpdirname:
                    peft_model.save_pretrained(tmpdirname, safe_serialization=False)
                    self.assertTrue("adapter_model.bin" in os.listdir(tmpdirname))
                    self.assertTrue("adapter_config.json" in os.listdir(tmpdirname))
                    self.assertTrue("pytorch_model.bin" not in os.listdir(tmpdirname))
                    self.assertTrue("model.safetensors" not in os.listdir(tmpdirname))

        # 8-bit
        for model_id in self.peft_test_model_ids:
            for transformers_class in self.transformers_test_model_classes:
                peft_model = transformers_class.from_pretrained(model_id, load_in_8bit=True, device_map="auto")

                module = peft_model.model.decoder.layers[0].self_attn.v_proj
                self.assertTrue(module.__class__.__name__ == "Linear8bitLt")
                self.assertTrue(peft_model.hf_device_map is not None)

                with tempfile.TemporaryDirectory() as tmpdirname:
                    peft_model.save_pretrained(tmpdirname, safe_serialization=False)

Younes Belkada's avatar
Younes Belkada committed
388
389
390
                    self.assertTrue("adapter_model.bin" in os.listdir(tmpdirname))
                    self.assertTrue("adapter_config.json" in os.listdir(tmpdirname))
                    self.assertTrue("pytorch_model.bin" not in os.listdir(tmpdirname))
391
                    self.assertTrue("model.safetensors" not in os.listdir(tmpdirname))
Younes Belkada's avatar
Younes Belkada committed
392

393
394
395
396
397
398
399
400
401
    def test_peft_pipeline(self):
        """
        Simple test that tests the basic usage of PEFT model + pipeline
        """
        from transformers import pipeline

        for model_id in self.peft_test_model_ids:
            pipe = pipeline("text-generation", model_id)
            _ = pipe("Hello")
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

    def test_peft_add_adapter_with_state_dict(self):
        """
        Simple test that tests the basic usage of PEFT model through `from_pretrained`. This test tests if
        add_adapter works as expected with a state_dict being passed.
        """
        from peft import LoraConfig

        dummy_input = torch.LongTensor([[0, 1, 2, 3, 4, 5, 6, 7]]).to(torch_device)

        for model_id, peft_model_id in zip(self.transformers_test_model_ids, self.peft_test_model_ids):
            for transformers_class in self.transformers_test_model_classes:
                model = transformers_class.from_pretrained(model_id).to(torch_device)

                peft_config = LoraConfig(init_lora_weights=False)

                with self.assertRaises(ValueError):
                    model.load_adapter(peft_model_id=None)

                state_dict_path = hf_hub_download(peft_model_id, "adapter_model.bin")

                dummy_state_dict = torch.load(state_dict_path)

                model.load_adapter(adapter_state_dict=dummy_state_dict, peft_config=peft_config)
                with self.assertRaises(ValueError):
                    model.load_adapter(model.load_adapter(adapter_state_dict=dummy_state_dict, peft_config=None))
                self.assertTrue(self._check_lora_correctly_converted(model))

                # dummy generation
                _ = model.generate(input_ids=dummy_input)
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458

    def test_peft_from_pretrained_hub_kwargs(self):
        """
        Tests different combinations of PEFT model + from_pretrained + hub kwargs
        """
        peft_model_id = "peft-internal-testing/tiny-opt-lora-revision"

        # This should not work
        with self.assertRaises(OSError):
            _ = AutoModelForCausalLM.from_pretrained(peft_model_id)

        adapter_kwargs = {"revision": "test"}

        # This should work
        model = AutoModelForCausalLM.from_pretrained(peft_model_id, adapter_kwargs=adapter_kwargs)
        self.assertTrue(self._check_lora_correctly_converted(model))

        model = OPTForCausalLM.from_pretrained(peft_model_id, adapter_kwargs=adapter_kwargs)
        self.assertTrue(self._check_lora_correctly_converted(model))

        adapter_kwargs = {"revision": "main", "subfolder": "test_subfolder"}

        model = AutoModelForCausalLM.from_pretrained(peft_model_id, adapter_kwargs=adapter_kwargs)
        self.assertTrue(self._check_lora_correctly_converted(model))

        model = OPTForCausalLM.from_pretrained(peft_model_id, adapter_kwargs=adapter_kwargs)
        self.assertTrue(self._check_lora_correctly_converted(model))