"src/git@developer.sourcefind.cn:gaoqiong/migraphx.git" did not exist on "b79f61f3900cc77b492d7d2c24e1d49c07995d26"
extract_features.py 14.3 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Extract pre-computed feature vectors from BERT."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import codecs
import collections
import json
import re

Tim Rault's avatar
Tim Rault committed
26
27
from tensorflow_code import modeling
from tensorflow_code import tokenization
thomwolf's avatar
thomwolf committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import tensorflow as tf

flags = tf.flags

FLAGS = flags.FLAGS

flags.DEFINE_string("input_file", None, "")

flags.DEFINE_string("output_file", None, "")

flags.DEFINE_string("layers", "-1,-2,-3,-4", "")

flags.DEFINE_string(
    "bert_config_file", None,
    "The config json file corresponding to the pre-trained BERT model. "
    "This specifies the model architecture.")

flags.DEFINE_integer(
    "max_seq_length", 128,
    "The maximum total input sequence length after WordPiece tokenization. "
    "Sequences longer than this will be truncated, and sequences shorter "
    "than this will be padded.")

flags.DEFINE_string(
    "init_checkpoint", None,
    "Initial checkpoint (usually from a pre-trained BERT model).")

flags.DEFINE_string("vocab_file", None,
                    "The vocabulary file that the BERT model was trained on.")

flags.DEFINE_bool(
    "do_lower_case", True,
    "Whethre to lower case the input text. Should be True for uncased "
    "models and False for cased models.")

flags.DEFINE_integer("batch_size", 32, "Batch size for predictions.")

flags.DEFINE_bool("use_tpu", False, "Whether to use TPU or GPU/CPU.")

flags.DEFINE_string("master", None,
                    "If using a TPU, the address of the master.")

flags.DEFINE_integer(
    "num_tpu_cores", 8,
    "Only used if `use_tpu` is True. Total number of TPU cores to use.")

flags.DEFINE_bool(
    "use_one_hot_embeddings", False,
    "If True, tf.one_hot will be used for embedding lookups, otherwise "
    "tf.nn.embedding_lookup will be used. On TPUs, this should be True "
    "since it is much faster.")


class InputExample(object):

83
84
85
86
    def __init__(self, unique_id, text_a, text_b):
        self.unique_id = unique_id
        self.text_a = text_a
        self.text_b = text_b
thomwolf's avatar
thomwolf committed
87
88
89


class InputFeatures(object):
90
    """A single set of features of data."""
thomwolf's avatar
thomwolf committed
91

92
93
94
95
96
97
    def __init__(self, unique_id, tokens, input_ids, input_mask, input_type_ids):
        self.unique_id = unique_id
        self.tokens = tokens
        self.input_ids = input_ids
        self.input_mask = input_mask
        self.input_type_ids = input_type_ids
thomwolf's avatar
thomwolf committed
98
99
100


def input_fn_builder(features, seq_length):
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
    """Creates an `input_fn` closure to be passed to TPUEstimator."""

    all_unique_ids = []
    all_input_ids = []
    all_input_mask = []
    all_input_type_ids = []

    for feature in features:
        all_unique_ids.append(feature.unique_id)
        all_input_ids.append(feature.input_ids)
        all_input_mask.append(feature.input_mask)
        all_input_type_ids.append(feature.input_type_ids)

    def input_fn(params):
        """The actual input function."""
        batch_size = params["batch_size"]

        num_examples = len(features)

        # This is for demo purposes and does NOT scale to large data sets. We do
        # not use Dataset.from_generator() because that uses tf.py_func which is
        # not TPU compatible. The right way to load data is with TFRecordReader.
        d = tf.data.Dataset.from_tensor_slices({
            "unique_ids":
                tf.constant(all_unique_ids, shape=[num_examples], dtype=tf.int32),
            "input_ids":
                tf.constant(
                    all_input_ids, shape=[num_examples, seq_length],
                    dtype=tf.int32),
            "input_mask":
                tf.constant(
                    all_input_mask,
                    shape=[num_examples, seq_length],
                    dtype=tf.int32),
            "input_type_ids":
                tf.constant(
                    all_input_type_ids,
                    shape=[num_examples, seq_length],
                    dtype=tf.int32),
        })

        d = d.batch(batch_size=batch_size, drop_remainder=False)
        return d

    return input_fn
thomwolf's avatar
thomwolf committed
146
147
148
149


def model_fn_builder(bert_config, init_checkpoint, layer_indexes, use_tpu,
                     use_one_hot_embeddings):
150
    """Returns `model_fn` closure for TPUEstimator."""
thomwolf's avatar
thomwolf committed
151

152
153
    def model_fn(features, labels, mode, params):  # pylint: disable=unused-argument
        """The `model_fn` for TPUEstimator."""
thomwolf's avatar
thomwolf committed
154

155
156
157
158
        unique_ids = features["unique_ids"]
        input_ids = features["input_ids"]
        input_mask = features["input_mask"]
        input_type_ids = features["input_type_ids"]
thomwolf's avatar
thomwolf committed
159

160
161
162
163
164
165
166
        model = modeling.BertModel(
            config=bert_config,
            is_training=False,
            input_ids=input_ids,
            input_mask=input_mask,
            token_type_ids=input_type_ids,
            use_one_hot_embeddings=use_one_hot_embeddings)
thomwolf's avatar
thomwolf committed
167

168
169
        if mode != tf.estimator.ModeKeys.PREDICT:
            raise ValueError("Only PREDICT modes are supported: %s" % (mode))
thomwolf's avatar
thomwolf committed
170

171
172
173
174
175
        tvars = tf.trainable_variables()
        scaffold_fn = None
        (assignment_map, _) = modeling.get_assigment_map_from_checkpoint(
            tvars, init_checkpoint)
        if use_tpu:
thomwolf's avatar
thomwolf committed
176

177
178
179
            def tpu_scaffold():
                tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
                return tf.train.Scaffold()
thomwolf's avatar
thomwolf committed
180

181
182
183
            scaffold_fn = tpu_scaffold
        else:
            tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
thomwolf's avatar
thomwolf committed
184

185
        all_layers = model.get_all_encoder_layers()
thomwolf's avatar
thomwolf committed
186

187
188
189
        predictions = {
            "unique_id": unique_ids,
        }
thomwolf's avatar
thomwolf committed
190

191
192
        for (i, layer_index) in enumerate(layer_indexes):
            predictions["layer_output_%d" % i] = all_layers[layer_index]
thomwolf's avatar
thomwolf committed
193

194
195
196
        output_spec = tf.contrib.tpu.TPUEstimatorSpec(
            mode=mode, predictions=predictions, scaffold_fn=scaffold_fn)
        return output_spec
thomwolf's avatar
thomwolf committed
197

198
    return model_fn
thomwolf's avatar
thomwolf committed
199
200
201


def convert_examples_to_features(examples, seq_length, tokenizer):
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
    """Loads a data file into a list of `InputBatch`s."""

    features = []
    for (ex_index, example) in enumerate(examples):
        tokens_a = tokenizer.tokenize(example.text_a)

        tokens_b = None
        if example.text_b:
            tokens_b = tokenizer.tokenize(example.text_b)

        if tokens_b:
            # Modifies `tokens_a` and `tokens_b` in place so that the total
            # length is less than the specified length.
            # Account for [CLS], [SEP], [SEP] with "- 3"
            _truncate_seq_pair(tokens_a, tokens_b, seq_length - 3)
        else:
            # Account for [CLS] and [SEP] with "- 2"
            if len(tokens_a) > seq_length - 2:
                tokens_a = tokens_a[0:(seq_length - 2)]

        # The convention in BERT is:
        # (a) For sequence pairs:
        #  tokens:   [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
        #  type_ids: 0   0  0    0    0     0       0 0    1  1  1  1   1 1
        # (b) For single sequences:
        #  tokens:   [CLS] the dog is hairy . [SEP]
        #  type_ids: 0   0   0   0  0     0 0
        #
        # Where "type_ids" are used to indicate whether this is the first
        # sequence or the second sequence. The embedding vectors for `type=0` and
        # `type=1` were learned during pre-training and are added to the wordpiece
        # embedding vector (and position vector). This is not *strictly* necessary
        # since the [SEP] token unambigiously separates the sequences, but it makes
        # it easier for the model to learn the concept of sequences.
        #
        # For classification tasks, the first vector (corresponding to [CLS]) is
        # used as as the "sentence vector". Note that this only makes sense because
        # the entire model is fine-tuned.
        tokens = []
        input_type_ids = []
        tokens.append("[CLS]")
        input_type_ids.append(0)
        for token in tokens_a:
            tokens.append(token)
            input_type_ids.append(0)
        tokens.append("[SEP]")
        input_type_ids.append(0)

        if tokens_b:
            for token in tokens_b:
                tokens.append(token)
                input_type_ids.append(1)
            tokens.append("[SEP]")
            input_type_ids.append(1)

        input_ids = tokenizer.convert_tokens_to_ids(tokens)

        # The mask has 1 for real tokens and 0 for padding tokens. Only real
        # tokens are attended to.
        input_mask = [1] * len(input_ids)

        # Zero-pad up to the sequence length.
        while len(input_ids) < seq_length:
            input_ids.append(0)
            input_mask.append(0)
            input_type_ids.append(0)

        assert len(input_ids) == seq_length
        assert len(input_mask) == seq_length
        assert len(input_type_ids) == seq_length

        if ex_index < 5:
            tf.logging.info("*** Example ***")
            tf.logging.info("unique_id: %s" % (example.unique_id))
            tf.logging.info("tokens: %s" % " ".join([str(x) for x in tokens]))
            tf.logging.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
            tf.logging.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
            tf.logging.info(
                "input_type_ids: %s" % " ".join([str(x) for x in input_type_ids]))

        features.append(
            InputFeatures(
                unique_id=example.unique_id,
                tokens=tokens,
                input_ids=input_ids,
                input_mask=input_mask,
                input_type_ids=input_type_ids))
    return features
thomwolf's avatar
thomwolf committed
290
291
292


def _truncate_seq_pair(tokens_a, tokens_b, max_length):
293
294
295
296
297
298
299
300
301
302
303
304
305
306
    """Truncates a sequence pair in place to the maximum length."""

    # This is a simple heuristic which will always truncate the longer sequence
    # one token at a time. This makes more sense than truncating an equal percent
    # of tokens from each, since if one sequence is very short then each token
    # that's truncated likely contains more information than a longer sequence.
    while True:
        total_length = len(tokens_a) + len(tokens_b)
        if total_length <= max_length:
            break
        if len(tokens_a) > len(tokens_b):
            tokens_a.pop()
        else:
            tokens_b.pop()
thomwolf's avatar
thomwolf committed
307
308
309


def read_examples(input_file):
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
    """Read a list of `InputExample`s from an input file."""
    examples = []
    unique_id = 0
    with tf.gfile.GFile(input_file, "r") as reader:
        while True:
            line = tokenization.convert_to_unicode(reader.readline())
            if not line:
                break
            line = line.strip()
            text_a = None
            text_b = None
            m = re.match(r"^(.*) \|\|\| (.*)$", line)
            if m is None:
                text_a = line
            else:
                text_a = m.group(1)
                text_b = m.group(2)
            examples.append(
                InputExample(unique_id=unique_id, text_a=text_a, text_b=text_b))
            unique_id += 1
    return examples
thomwolf's avatar
thomwolf committed
331
332
333


def main(_):
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
    tf.logging.set_verbosity(tf.logging.INFO)

    layer_indexes = [int(x) for x in FLAGS.layers.split(",")]

    bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file)

    tokenizer = tokenization.FullTokenizer(
        vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case)

    is_per_host = tf.contrib.tpu.InputPipelineConfig.PER_HOST_V2
    run_config = tf.contrib.tpu.RunConfig(
        master=FLAGS.master,
        tpu_config=tf.contrib.tpu.TPUConfig(
            num_shards=FLAGS.num_tpu_cores,
            per_host_input_for_training=is_per_host))

    examples = read_examples(FLAGS.input_file)

    features = convert_examples_to_features(
        examples=examples, seq_length=FLAGS.max_seq_length, tokenizer=tokenizer)

    unique_id_to_feature = {}
    for feature in features:
        unique_id_to_feature[feature.unique_id] = feature

    model_fn = model_fn_builder(
        bert_config=bert_config,
        init_checkpoint=FLAGS.init_checkpoint,
        layer_indexes=layer_indexes,
        use_tpu=FLAGS.use_tpu,
        use_one_hot_embeddings=FLAGS.use_one_hot_embeddings)

    # If TPU is not available, this will fall back to normal Estimator on CPU
    # or GPU.
    estimator = tf.contrib.tpu.TPUEstimator(
        use_tpu=FLAGS.use_tpu,
        model_fn=model_fn,
        config=run_config,
        predict_batch_size=FLAGS.batch_size)

    input_fn = input_fn_builder(
        features=features, seq_length=FLAGS.max_seq_length)

    with codecs.getwriter("utf-8")(tf.gfile.Open(FLAGS.output_file,
                                                 "w")) as writer:
        for result in estimator.predict(input_fn, yield_single_examples=True):
            unique_id = int(result["unique_id"])
            feature = unique_id_to_feature[unique_id]
            output_json = collections.OrderedDict()
            output_json["linex_index"] = unique_id
            all_features = []
            for (i, token) in enumerate(feature.tokens):
                all_layers = []
                for (j, layer_index) in enumerate(layer_indexes):
                    layer_output = result["layer_output_%d" % j]
                    layers = collections.OrderedDict()
                    layers["index"] = layer_index
                    layers["values"] = [
                        round(float(x), 6) for x in layer_output[i:(i + 1)].flat
                    ]
                    all_layers.append(layers)
                features = collections.OrderedDict()
                features["token"] = token
                features["layers"] = all_layers
                all_features.append(features)
            output_json["features"] = all_features
            writer.write(json.dumps(output_json) + "\n")
thomwolf's avatar
thomwolf committed
401
402
403


if __name__ == "__main__":
404
405
406
407
408
409
    flags.mark_flag_as_required("input_file")
    flags.mark_flag_as_required("vocab_file")
    flags.mark_flag_as_required("bert_config_file")
    flags.mark_flag_as_required("init_checkpoint")
    flags.mark_flag_as_required("output_file")
    tf.app.run()