README.md 1.86 KB
Newer Older
1
2
3
4
5
6
7
8
---
datasets:
- squad
tags:
- question-generation
widget:
- text: "generate question: <hl> 42 <hl> is the answer to life, the universe and everything. </s>"
- text: "question: What is 42 context: 42 is the answer to life, the universe and everything. </s>"
Julien Chaumond's avatar
Julien Chaumond committed
9
license: mit
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
---

## T5 for multi-task QA and QG
This is multi-task [t5-base](https://arxiv.org/abs/1910.10683) model trained for question answering and answer aware question generation tasks. 

For question generation the answer spans are highlighted within the text with special highlight tokens (`<hl>`) and prefixed with 'generate question: '. For QA the input is processed like this `question: question_text context: context_text </s>` 

You can play with the model using the inference API. Here's how you can use it

For QG

`generate question: <hl> 42 <hl> is the answer to life, the universe and everything. </s>`

For QA

`question: What is 42 context: 42 is the answer to life, the universe and everything. </s>`

For more deatils see [this](https://github.com/patil-suraj/question_generation) repo.


### Model in action 馃殌

You'll need to clone the [repo](https://github.com/patil-suraj/question_generation).

[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/patil-suraj/question_generation/blob/master/question_generation.ipynb)

```python3
from pipelines import pipeline
nlp = pipeline("multitask-qa-qg", model="valhalla/t5-base-qa-qg-hl")

# to generate questions simply pass the text
nlp("42 is the answer to life, the universe and everything.")
=> [{'answer': '42', 'question': 'What is the answer to life, the universe and everything?'}]

# for qa pass a dict with "question" and "context"
nlp({
    "question": "What is 42 ?",
    "context": "42 is the answer to life, the universe and everything."
})
=> 'the answer to life, the universe and everything'
```