test_datasets.py 7.55 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import os
import tempfile
from pathlib import Path

import numpy as np
import pytest
from torch.utils.data import DataLoader

from transformers import AutoTokenizer
from transformers.modeling_bart import shift_tokens_right
from transformers.testing_utils import slow

from .pack_dataset import pack_data_dir
from .save_len_file import save_len_file
from .test_seq2seq_examples import ARTICLES, BART_TINY, MARIAN_TINY, MBART_TINY, SUMMARIES, T5_TINY, make_test_data_dir
from .utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeq2SeqDataset, Seq2SeqDataset


BERT_BASE_CASED = "bert-base-cased"
PEGASUS_XSUM = "google/pegasus-xsum"


@slow
@pytest.mark.parametrize(
    "tok_name",
    [
        MBART_TINY,
        MARIAN_TINY,
        T5_TINY,
        BART_TINY,
        PEGASUS_XSUM,
    ],
)
def test_seq2seq_dataset_truncation(tok_name):
    tokenizer = AutoTokenizer.from_pretrained(tok_name)
    tmp_dir = make_test_data_dir()
    max_len_source = max(len(tokenizer.encode(a)) for a in ARTICLES)
    max_len_target = max(len(tokenizer.encode(a)) for a in SUMMARIES)
    max_src_len = 4
    max_tgt_len = 8
    assert max_len_target > max_src_len  # Will be truncated
    assert max_len_source > max_src_len  # Will be truncated
    src_lang, tgt_lang = "ro_RO", "de_DE"  # ignored for all but mbart, but never causes error.
    train_dataset = Seq2SeqDataset(
        tokenizer,
        data_dir=tmp_dir,
        type_path="train",
        max_source_length=max_src_len,
        max_target_length=max_tgt_len,  # ignored
        src_lang=src_lang,
        tgt_lang=tgt_lang,
    )
    dataloader = DataLoader(train_dataset, batch_size=2, collate_fn=train_dataset.collate_fn)
    for batch in dataloader:
        assert isinstance(batch, dict)
        assert batch["attention_mask"].shape == batch["input_ids"].shape
        # show that articles were trimmed.
        assert batch["input_ids"].shape[1] == max_src_len
        # show that targets are the same len
        assert batch["labels"].shape[1] == max_tgt_len
        if tok_name != MBART_TINY:
            continue
        # check language codes in correct place
        batch["decoder_input_ids"] = shift_tokens_right(batch["labels"], tokenizer.pad_token_id)
        assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang]
        assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id
        assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id
        assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang]

        break  # No need to test every batch


@pytest.mark.parametrize("tok", [BART_TINY, BERT_BASE_CASED])
def test_legacy_dataset_truncation(tok):
    tokenizer = AutoTokenizer.from_pretrained(tok)
    tmp_dir = make_test_data_dir()
    max_len_source = max(len(tokenizer.encode(a)) for a in ARTICLES)
    max_len_target = max(len(tokenizer.encode(a)) for a in SUMMARIES)
    trunc_target = 4
    train_dataset = LegacySeq2SeqDataset(
        tokenizer,
        data_dir=tmp_dir,
        type_path="train",
        max_source_length=20,
        max_target_length=trunc_target,
    )
    dataloader = DataLoader(train_dataset, batch_size=2, collate_fn=train_dataset.collate_fn)
    for batch in dataloader:
        assert batch["attention_mask"].shape == batch["input_ids"].shape
        # show that articles were trimmed.
        assert batch["input_ids"].shape[1] == max_len_source
        assert 20 >= batch["input_ids"].shape[1]  # trimmed significantly
        # show that targets were truncated
        assert batch["labels"].shape[1] == trunc_target  # Truncated
        assert max_len_target > trunc_target  # Truncated
        break  # No need to test every batch


def test_pack_dataset():
    tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25")

    tmp_dir = Path(make_test_data_dir())
    orig_examples = tmp_dir.joinpath("train.source").open().readlines()
    save_dir = Path(tempfile.mkdtemp(prefix="packed_"))
    pack_data_dir(tokenizer, tmp_dir, 128, save_dir)
    orig_paths = {x.name for x in tmp_dir.iterdir()}
    new_paths = {x.name for x in save_dir.iterdir()}
    packed_examples = save_dir.joinpath("train.source").open().readlines()
    # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.']
    # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.']
    assert len(packed_examples) < len(orig_examples)
    assert len(packed_examples) == 1
    assert len(packed_examples[0]) == sum(len(x) for x in orig_examples)
    assert orig_paths == new_paths


@pytest.mark.skipif(not FAIRSEQ_AVAILABLE, reason="This test requires fairseq")
def test_dynamic_batch_size():
    if not FAIRSEQ_AVAILABLE:
        return
    ds, max_tokens, tokenizer = _get_dataset(max_len=64)
    required_batch_size_multiple = 64
    batch_sampler = ds.make_dynamic_sampler(max_tokens, required_batch_size_multiple=required_batch_size_multiple)
    batch_sizes = [len(x) for x in batch_sampler]
    assert len(set(batch_sizes)) > 1  # it's not dynamic batch size if every batch is the same length
    assert sum(batch_sizes) == len(ds)  # no dropped or added examples
    data_loader = DataLoader(ds, batch_sampler=batch_sampler, collate_fn=ds.collate_fn, num_workers=2)
    failures = []
    num_src_per_batch = []
    for batch in data_loader:
        src_shape = batch["input_ids"].shape
        bs = src_shape[0]
        assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple
        num_src_tokens = np.product(batch["input_ids"].shape)
        num_src_per_batch.append(num_src_tokens)
        if num_src_tokens > (max_tokens * 1.1):
            failures.append(num_src_tokens)
    assert num_src_per_batch[0] == max(num_src_per_batch)
    if failures:
        raise AssertionError(f"too many tokens in {len(failures)} batches")


def test_sortish_sampler_reduces_padding():
    ds, _, tokenizer = _get_dataset(max_len=512)
    bs = 2
    sortish_sampler = ds.make_sortish_sampler(bs, shuffle=False)

    naive_dl = DataLoader(ds, batch_size=bs, collate_fn=ds.collate_fn, num_workers=2)
    sortish_dl = DataLoader(ds, batch_size=bs, collate_fn=ds.collate_fn, num_workers=2, sampler=sortish_sampler)

    pad = tokenizer.pad_token_id

    def count_pad_tokens(data_loader, k="input_ids"):
        return [batch[k].eq(pad).sum().item() for batch in data_loader]

    assert sum(count_pad_tokens(sortish_dl, k="labels")) < sum(count_pad_tokens(naive_dl, k="labels"))
    assert sum(count_pad_tokens(sortish_dl)) < sum(count_pad_tokens(naive_dl))
    assert len(sortish_dl) == len(naive_dl)


def _get_dataset(n_obs=1000, max_len=128):
    if os.getenv("USE_REAL_DATA", False):
        data_dir = "examples/seq2seq/wmt_en_ro"
        max_tokens = max_len * 2 * 64
        if not Path(data_dir).joinpath("train.len").exists():
            save_len_file(MARIAN_TINY, data_dir)
    else:
        data_dir = "examples/seq2seq/test_data/wmt_en_ro"
        max_tokens = max_len * 4
        save_len_file(MARIAN_TINY, data_dir)

    tokenizer = AutoTokenizer.from_pretrained(MARIAN_TINY)
    ds = Seq2SeqDataset(
        tokenizer,
        data_dir=data_dir,
        type_path="train",
        max_source_length=max_len,
        max_target_length=max_len,
        n_obs=n_obs,
    )
    return ds, max_tokens, tokenizer


def test_distributed_sortish_sampler_splits_indices_between_procs():
    ds, max_tokens, tokenizer = _get_dataset()
    ids1 = set(DistributedSortishSampler(ds, 256, num_replicas=2, rank=0, add_extra_examples=False))
    ids2 = set(DistributedSortishSampler(ds, 256, num_replicas=2, rank=1, add_extra_examples=False))
    assert ids1.intersection(ids2) == set()