README.md 20.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
<!---
Copyright 2020 The HuggingFace Team. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->

# 馃 Transformers Notebooks

You can find here a list of the official notebooks provided by Hugging Face.

Also, we would like to list here interesting content created by the community. 
If you wrote some notebook(s) leveraging 馃 Transformers and would like be listed here, please open a 
Pull Request so it can be included under the Community notebooks. 


## Hugging Face's notebooks 馃

28
29
30
31
### Documentation notebooks

You can open any page of the documentation as a notebook in colab (there is a button directly on said pages) but they are also listed here if you need to:

Mishig Davaadorj's avatar
Mishig Davaadorj committed
32
33
34
35
36
37
38
39
40
| Notebook     |      Description      |   |   |
|:----------|:-------------|:-------------|------:|
| [Quicktour of the library](https://github.com/huggingface/notebooks/blob/master/transformers_doc/quicktour.ipynb)  | A presentation of the various APIs in Transformers |[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/master/transformers_doc/quicktour.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/master/transformers_doc/quicktour.ipynb)| 
| [Summary of the tasks](https://github.com/huggingface/notebooks/blob/master/transformers_doc/task_summary.ipynb)  | How to run the models of the Transformers library task by task |[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/master/transformers_doc/task_summary.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/master/transformers_doc/task_summary.ipynb)| 
| [Preprocessing data](https://github.com/huggingface/notebooks/blob/master/transformers_doc/preprocessing.ipynb)  | How to use a tokenizer to preprocess your data |[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/master/transformers_doc/preprocessing.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/master/transformers_doc/preprocessing.ipynb)| 
| [Fine-tuning a pretrained model](https://github.com/huggingface/notebooks/blob/master/transformers_doc/training.ipynb)  | How to use the Trainer to fine-tune a pretrained model |[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/master/transformers_doc/training.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/master/transformers_doc/training.ipynb)| 
| [Summary of the tokenizers](https://github.com/huggingface/notebooks/blob/master/transformers_doc/tokenizer_summary.ipynb)  | The differences between the tokenizers algorithm |[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/master/transformers_doc/tokenizer_summary.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/master/transformers_doc/tokenizer_summary.ipynb)| 
| [Multilingual models](https://github.com/huggingface/notebooks/blob/master/transformers_doc/multilingual.ipynb)  | How to use the multilingual models of the library |[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/master/transformers_doc/multilingual.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/master/transformers_doc/multilingual.ipynb)| 
| [Fine-tuning with custom datasets](https://github.com/huggingface/notebooks/blob/master/transformers_doc/custom_datasets.ipynb)  | How to fine-tune a pretrained model on various tasks |[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/master/transformers_doc/custom_datasets.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/master/transformers_doc/custom_datasets.ipynb)| 
41

Matt's avatar
Matt committed
42
### PyTorch Examples
43

Mishig Davaadorj's avatar
Mishig Davaadorj committed
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
| Notebook     |      Description      |   |   |
|:----------|:-------------|:-------------|------:|
| [Train your tokenizer](https://github.com/huggingface/notebooks/blob/master/examples/tokenizer_training.ipynb)  | How to train and use your very own tokenizer  |[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/tokenizer_training.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/master/examples/tokenizer_training.ipynb)| 
| [Train your language model](https://github.com/huggingface/notebooks/blob/master/examples/language_modeling_from_scratch.ipynb)   | How to easily start using transformers  |[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/language_modeling_from_scratch.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/master/examples/language_modeling_from_scratch.ipynb)| 
| [How to fine-tune a model on text classification](https://github.com/huggingface/notebooks/blob/master/examples/text_classification.ipynb)| Show how to preprocess the data and fine-tune a pretrained model on any GLUE task. | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/text_classification.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/master/examples/text_classification.ipynb)| 
| [How to fine-tune a model on language modeling](https://github.com/huggingface/notebooks/blob/master/examples/language_modeling.ipynb)| Show how to preprocess the data and fine-tune a pretrained model on a causal or masked LM task. | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/language_modeling.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/master/examples/language_modeling.ipynb)| 
| [How to fine-tune a model on token classification](https://github.com/huggingface/notebooks/blob/master/examples/token_classification.ipynb)| Show how to preprocess the data and fine-tune a pretrained model on a token classification task (NER, PoS). | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/token_classification.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/master/examples/token_classification.ipynb)| 
| [How to fine-tune a model on question answering](https://github.com/huggingface/notebooks/blob/master/examples/question_answering.ipynb)| Show how to preprocess the data and fine-tune a pretrained model on SQUAD. | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/question_answering.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/master/examples/question_answering.ipynb)| 
| [How to fine-tune a model on multiple choice](https://github.com/huggingface/notebooks/blob/master/examples/multiple_choice.ipynb)| Show how to preprocess the data and fine-tune a pretrained model on SWAG. | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/multiple_choice.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/master/examples/multiple_choice.ipynb)| 
| [How to fine-tune a model on translation](https://github.com/huggingface/notebooks/blob/master/examples/translation.ipynb)| Show how to preprocess the data and fine-tune a pretrained model on WMT. | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/translation.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/master/examples/translation.ipynb)| 
| [How to fine-tune a model on summarization](https://github.com/huggingface/notebooks/blob/master/examples/summarization.ipynb)| Show how to preprocess the data and fine-tune a pretrained model on XSUM. | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/summarization.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/master/examples/summarization.ipynb)| 
| [How to fine-tune a speech recognition model in English](https://github.com/huggingface/notebooks/blob/master/examples/speech_recognition.ipynb)| Show how to preprocess the data and fine-tune a pretrained Speech model on TIMIT | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/speech_recognition.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/master/examples/speech_recognition.ipynb)| 
| [How to fine-tune a speech recognition model in any language](https://github.com/huggingface/notebooks/blob/master/examples/multi_lingual_speech_recognition.ipynb)| Show how to preprocess the data and fine-tune a multi-lingually pretrained speech model on Common Voice | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/multi_lingual_speech_recognition.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/master/examples/multi_lingual_speech_recognition.ipynb)| 
| [How to fine-tune a model on audio classification](https://github.com/huggingface/notebooks/blob/master/examples/audio_classification.ipynb)| Show how to preprocess the data and fine-tune a pretrained Speech model on Keyword Spotting | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/audio_classification.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/master/examples/audio_classification.ipynb)| 
| [How to train a language model from scratch](https://github.com/huggingface/blog/blob/master/notebooks/01_how_to_train.ipynb)| Highlight all the steps to effectively train Transformer model on custom data | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/blog/blob/master/notebooks/01_how_to_train.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/blog/blob/master/notebooks/01_how_to_train.ipynb)| 
| [How to generate text](https://github.com/huggingface/blog/blob/master/notebooks/02_how_to_generate.ipynb)| How to use different decoding methods for language generation with transformers | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/blog/blob/master/notebooks/02_how_to_generate.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/blog/blob/master/notebooks/02_how_to_generate.ipynb)| 
| [How to export model to ONNX](https://github.com/huggingface/notebooks/blob/master/examples/onnx-export.ipynb)| Highlight how to export and run inference workloads through ONNX |
| [How to use Benchmarks](https://github.com/huggingface/notebooks/blob/master/examples/benchmark.ipynb)| How to benchmark models with transformers | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/benchmark.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/master/examples/benchmark.ipynb)| 
| [Reformer](https://github.com/huggingface/blog/blob/master/notebooks/03_reformer.ipynb)| How Reformer pushes the limits of language modeling | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/patrickvonplaten/blog/blob/master/notebooks/03_reformer.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/patrickvonplaten/blog/blob/master/notebooks/03_reformer.ipynb)| 
63

Matt's avatar
Matt committed
64
65
### TensorFlow Examples

Mishig Davaadorj's avatar
Mishig Davaadorj committed
66
67
68
69
70
71
72
73
74
75
76
| Notebook     |      Description      |   |   |
|:----------|:-------------|:-------------|------:|
| [Train your tokenizer](https://github.com/huggingface/notebooks/blob/master/examples/tokenizer_training.ipynb)  | How to train and use your very own tokenizer  |[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/tokenizer_training.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/master/examples/tokenizer_training.ipynb)| 
| [Train your language model](https://github.com/huggingface/notebooks/blob/master/examples/language_modeling_from_scratch-tf.ipynb)   | How to easily start using transformers  |[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/language_modeling_from_scratch-tf.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/master/examples/language_modeling_from_scratch-tf.ipynb)| 
| [How to fine-tune a model on text classification](https://github.com/huggingface/notebooks/blob/master/examples/text_classification-tf.ipynb)| Show how to preprocess the data and fine-tune a pretrained model on any GLUE task. | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/text_classification-tf.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/master/examples/text_classification-tf.ipynb)| 
| [How to fine-tune a model on language modeling](https://github.com/huggingface/notebooks/blob/master/examples/language_modeling-tf.ipynb)| Show how to preprocess the data and fine-tune a pretrained model on a causal or masked LM task. | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/language_modeling-tf.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/master/examples/language_modeling-tf.ipynb)| 
| [How to fine-tune a model on token classification](https://github.com/huggingface/notebooks/blob/master/examples/token_classification-tf.ipynb)| Show how to preprocess the data and fine-tune a pretrained model on a token classification task (NER, PoS). | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/token_classification-tf.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/master/examples/token_classification-tf.ipynb)| 
| [How to fine-tune a model on question answering](https://github.com/huggingface/notebooks/blob/master/examples/question_answering-tf.ipynb)| Show how to preprocess the data and fine-tune a pretrained model on SQUAD. | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/question_answering-tf.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/master/examples/question_answering-tf.ipynb)| 
| [How to fine-tune a model on multiple choice](https://github.com/huggingface/notebooks/blob/master/examples/multiple_choice-tf.ipynb)| Show how to preprocess the data and fine-tune a pretrained model on SWAG. | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/multiple_choice-tf.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/master/examples/multiple_choice-tf.ipynb)| 
| [How to fine-tune a model on translation](https://github.com/huggingface/notebooks/blob/master/examples/translation-tf.ipynb)| Show how to preprocess the data and fine-tune a pretrained model on WMT. | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/translation-tf.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/master/examples/translation-tf.ipynb)| 
| [How to fine-tune a model on summarization](https://github.com/huggingface/notebooks/blob/master/examples/summarization-tf.ipynb)| Show how to preprocess the data and fine-tune a pretrained model on XSUM. | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/summarization-tf.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/master/examples/summarization-tf.ipynb)| 
Matt's avatar
Matt committed
77

78
79
80
81
### Optimum notebooks

馃  [Optimum](https://github.com/huggingface/optimum) is an extension of 馃 Transformers, providing a set of performance optimization tools enabling maximum efficiency to train and run models on targeted hardwares.

Mishig Davaadorj's avatar
Mishig Davaadorj committed
82
83
84
| Notebook     |      Description      |   |   |
|:----------|:-------------|:-------------|------:|
| [How to quantize a model for text classification](https://github.com/huggingface/notebooks/blob/master/examples/text_classification_quantization_inc.ipynb)| Show how to apply [Intel Neural Compressor (INC)](https://github.com/intel/neural-compressor) quantization on a model for any GLUE task. | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/text_classification_quantization_inc.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/master/examples/text_classification_quantization_inc.ipynb)| 
85
86
87

## Community notebooks:

Sylvain Gugger's avatar
Sylvain Gugger committed
88
More notebooks developed by the community are available [here](community#community-notebooks).