transformer_base.py 9.69 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import os
import random

import numpy as np
import pytorch_lightning as pl
import torch

from transformers import (
    AdamW,
    BertConfig,
    BertForTokenClassification,
    BertTokenizer,
    CamembertConfig,
    CamembertForTokenClassification,
    CamembertTokenizer,
    DistilBertConfig,
    DistilBertForTokenClassification,
    DistilBertTokenizer,
    RobertaConfig,
    RobertaForTokenClassification,
    RobertaTokenizer,
    XLMRobertaConfig,
    XLMRobertaForTokenClassification,
    XLMRobertaTokenizer,
    get_linear_schedule_with_warmup,
)


ALL_MODELS = sum(
    (
        tuple(conf.pretrained_config_archive_map.keys())
        for conf in (BertConfig, RobertaConfig, DistilBertConfig, CamembertConfig, XLMRobertaConfig)
    ),
    (),
)

MODEL_CLASSES = {
    "bert": (BertConfig, BertForTokenClassification, BertTokenizer),
    "roberta": (RobertaConfig, RobertaForTokenClassification, RobertaTokenizer),
    "distilbert": (DistilBertConfig, DistilBertForTokenClassification, DistilBertTokenizer),
    "camembert": (CamembertConfig, CamembertForTokenClassification, CamembertTokenizer),
    "xlmroberta": (XLMRobertaConfig, XLMRobertaForTokenClassification, XLMRobertaTokenizer),
}


def set_seed(args):
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if args.n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)


class BaseTransformer(pl.LightningModule):
    def __init__(self, hparams, num_labels=None):
        "Initialize a model."

        super(BaseTransformer, self).__init__()
        self.hparams = hparams
        self.hparams.model_type = self.hparams.model_type.lower()

        config_class, model_class, tokenizer_class = MODEL_CLASSES[self.hparams.model_type]
        config = config_class.from_pretrained(
            self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path,
            num_labels=num_labels,
            cache_dir=self.hparams.cache_dir if self.hparams.cache_dir else None,
        )
        tokenizer = tokenizer_class.from_pretrained(
            self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path,
            do_lower_case=self.hparams.do_lower_case,
            cache_dir=self.hparams.cache_dir if self.hparams.cache_dir else None,
        )
        model = model_class.from_pretrained(
            self.hparams.model_name_or_path,
            from_tf=bool(".ckpt" in self.hparams.model_name_or_path),
            config=config,
            cache_dir=self.hparams.cache_dir if self.hparams.cache_dir else None,
        )
        self.config, self.tokenizer, self.model = config, tokenizer, model
        self.proc_rank = -1

    def is_logger(self):
        return self.proc_rank <= 0

    def configure_optimizers(self):
        "Prepare optimizer and schedule (linear warmup and decay)"
        model = self.model

        t_total = (
            len(self.train_dataloader())
            // self.hparams.gradient_accumulation_steps
            * float(self.hparams.num_train_epochs)
        )
        no_decay = ["bias", "LayerNorm.weight"]
        optimizer_grouped_parameters = [
            {
                "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
                "weight_decay": self.hparams.weight_decay,
            },
            {
                "params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
                "weight_decay": 0.0,
            },
        ]
        optimizer = AdamW(optimizer_grouped_parameters, lr=self.hparams.learning_rate, eps=self.hparams.adam_epsilon)
        scheduler = get_linear_schedule_with_warmup(
            optimizer, num_warmup_steps=self.hparams.warmup_steps, num_training_steps=t_total
        )
        self.lr_scheduler = scheduler
        return [optimizer]

    def optimizer_step(self, epoch, batch_idx, optimizer, optimizer_idx, second_order_closure=None):

        # Step each time.
        optimizer.step()
        self.lr_scheduler.step()
        optimizer.zero_grad()

    def get_tqdm_dict(self):
        tqdm_dict = {"loss": "{:.3f}".format(self.trainer.avg_loss), "lr": self.lr_scheduler.get_last_lr()[-1]}

        return tqdm_dict

    def test_step(self, batch, batch_nb):
        return self.validation_step(batch, batch_nb)

    def test_end(self, outputs):
        return self.validation_end(outputs)

    @pl.data_loader
    def train_dataloader(self):
        return self.load_dataset("train", self.hparams.train_batch_size)

    @pl.data_loader
    def val_dataloader(self):
        return self.load_dataset("dev", self.hparams.eval_batch_size)

    @pl.data_loader
    def test_dataloader(self):
        return self.load_dataset("test", self.hparams.eval_batch_size)

    def init_ddp_connection(self, proc_rank, world_size):
        self.proc_rank = proc_rank
        super(BaseTransformer, self).init_ddp_connection(proc_rank, world_size)

    @staticmethod
    def add_model_specific_args(parser, root_dir):
        parser.add_argument(
            "--model_type",
            default=None,
            type=str,
            required=True,
            help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()),
        )
        parser.add_argument(
            "--model_name_or_path",
            default=None,
            type=str,
            required=True,
            help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS),
        )
        parser.add_argument(
            "--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name"
        )
        parser.add_argument(
            "--tokenizer_name",
            default="",
            type=str,
            help="Pretrained tokenizer name or path if not the same as model_name",
        )
        parser.add_argument(
            "--cache_dir",
            default="",
            type=str,
            help="Where do you want to store the pre-trained models downloaded from s3",
        )
        parser.add_argument(
            "--do_lower_case", action="store_true", help="Set this flag if you are using an uncased model."
        )
        parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.")
        parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.")
        parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.")
        parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.")
        parser.add_argument(
            "--num_train_epochs", default=3, type=int, help="Total number of training epochs to perform."
        )

        parser.add_argument("--train_batch_size", default=32, type=int)
        parser.add_argument("--eval_batch_size", default=32, type=int)


def add_generic_args(parser, root_dir):
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help="The output directory where the model predictions and checkpoints will be written.",
    )

    parser.add_argument(
        "--fp16",
        action="store_true",
        help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit",
    )

    parser.add_argument(
        "--fp16_opt_level",
        type=str,
        default="O1",
        help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
        "See details at https://nvidia.github.io/apex/amp.html",
    )

    parser.add_argument("--n_gpu", type=int, default=1)
    parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
    parser.add_argument("--do_train", action="store_true", help="Whether to run training.")
    parser.add_argument("--do_predict", action="store_true", help="Whether to run predictions on the test set.")
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )

    parser.add_argument("--server_ip", type=str, default="", help="For distant debugging.")
    parser.add_argument("--server_port", type=str, default="", help="For distant debugging.")
    parser.add_argument("--seed", type=int, default=42, help="random seed for initialization")


def generic_train(model, args):
    # init model
    set_seed(args)

    # Setup distant debugging if needed
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd

        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()

    if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train:
        raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))

    checkpoint_callback = pl.callbacks.ModelCheckpoint(
        filepath=args.output_dir, prefix="checkpoint", monitor="val_loss", mode="min", save_top_k=5
    )

srush's avatar
srush committed
251
    train_params = dict(
252
253
254
255
256
257
        accumulate_grad_batches=args.gradient_accumulation_steps,
        gpus=args.n_gpu,
        max_epochs=args.num_train_epochs,
        gradient_clip_val=args.max_grad_norm,
        checkpoint_callback=checkpoint_callback,
    )
srush's avatar
srush committed
258
259
260
261
262
263
264
265
266
    if args.fp16:
        train_params["use_amp"] = args.fp16
        train_params["amp_level"] = args.fp16_opt_level

    if args.n_gpu > 1:
        train_params["distributed_backend"] = "ddp"

    trainer = pl.Trainer(**train_params)

267
268
269
270
    if args.do_train:
        trainer.fit(model)

    return trainer