test_pipelines_text_to_audio.py 8.93 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

import numpy as np

from transformers import (
    MODEL_FOR_TEXT_TO_WAVEFORM_MAPPING,
    AutoProcessor,
    TextToAudioPipeline,
    pipeline,
)
from transformers.testing_utils import (
    is_pipeline_test,
    require_torch,
28
    require_torch_accelerator,
29
30
    require_torch_or_tf,
    slow,
31
    torch_device,
32
)
33
from transformers.trainer_utils import set_seed
34
35
36
37
38
39
40
41

from .test_pipelines_common import ANY


@is_pipeline_test
@require_torch_or_tf
class TextToAudioPipelineTests(unittest.TestCase):
    model_mapping = MODEL_FOR_TEXT_TO_WAVEFORM_MAPPING
42
    # for now only test text_to_waveform and not text_to_spectrogram
43
44
45

    @slow
    @require_torch
46
47
    def test_small_musicgen_pt(self):
        music_generator = pipeline(task="text-to-audio", model="facebook/musicgen-small", framework="pt")
48
49
50
51
52
53

        forward_params = {
            "do_sample": False,
            "max_new_tokens": 250,
        }

54
55
        outputs = music_generator("This is a test", forward_params=forward_params)
        self.assertEqual({"audio": ANY(np.ndarray), "sampling_rate": 32000}, outputs)
56
57

        # test two examples side-by-side
58
        outputs = music_generator(["This is a test", "This is a second test"], forward_params=forward_params)
59
60
61
62
        audio = [output["audio"] for output in outputs]
        self.assertEqual([ANY(np.ndarray), ANY(np.ndarray)], audio)

        # test batching
63
        outputs = music_generator(
64
65
            ["This is a test", "This is a second test"], forward_params=forward_params, batch_size=2
        )
66
67
        audio = [output["audio"] for output in outputs]
        self.assertEqual([ANY(np.ndarray), ANY(np.ndarray)], audio)
68
69
70

    @slow
    @require_torch
71
    def test_small_bark_pt(self):
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
        speech_generator = pipeline(task="text-to-audio", model="suno/bark-small", framework="pt")

        forward_params = {
            # Using `do_sample=False` to force deterministic output
            "do_sample": False,
            "semantic_max_new_tokens": 100,
        }

        outputs = speech_generator("This is a test", forward_params=forward_params)
        self.assertEqual(
            {"audio": ANY(np.ndarray), "sampling_rate": 24000},
            outputs,
        )

        # test two examples side-by-side
        outputs = speech_generator(
            ["This is a test", "This is a second test"],
            forward_params=forward_params,
        )
        audio = [output["audio"] for output in outputs]
        self.assertEqual([ANY(np.ndarray), ANY(np.ndarray)], audio)

        # test other generation strategy
        forward_params = {
            "do_sample": True,
            "semantic_max_new_tokens": 100,
            "semantic_num_return_sequences": 2,
        }

        outputs = speech_generator("This is a test", forward_params=forward_params)
        audio = outputs["audio"]
        self.assertEqual(ANY(np.ndarray), audio)

        # test using a speaker embedding
        processor = AutoProcessor.from_pretrained("suno/bark-small")
        temp_inp = processor("hey, how are you?", voice_preset="v2/en_speaker_5")
        history_prompt = temp_inp["history_prompt"]
        forward_params["history_prompt"] = history_prompt

        outputs = speech_generator(
            ["This is a test", "This is a second test"],
            forward_params=forward_params,
            batch_size=2,
        )
        audio = [output["audio"] for output in outputs]
        self.assertEqual([ANY(np.ndarray), ANY(np.ndarray)], audio)

    @slow
120
    @require_torch_accelerator
121
    def test_conversion_additional_tensor(self):
122
        speech_generator = pipeline(task="text-to-audio", model="suno/bark-small", framework="pt", device=torch_device)
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
        processor = AutoProcessor.from_pretrained("suno/bark-small")

        forward_params = {
            "do_sample": True,
            "semantic_max_new_tokens": 100,
        }

        # atm, must do to stay coherent with BarkProcessor
        preprocess_params = {
            "max_length": 256,
            "add_special_tokens": False,
            "return_attention_mask": True,
            "return_token_type_ids": False,
            "padding": "max_length",
        }
        outputs = speech_generator(
            "This is a test",
            forward_params=forward_params,
            preprocess_params=preprocess_params,
        )

        temp_inp = processor("hey, how are you?", voice_preset="v2/en_speaker_5")
        history_prompt = temp_inp["history_prompt"]
        forward_params["history_prompt"] = history_prompt

        # history_prompt is a torch.Tensor passed as a forward_param
149
        # if generation is successful, it means that it was passed to the right device
150
151
152
153
154
155
156
157
        outputs = speech_generator(
            "This is a test", forward_params=forward_params, preprocess_params=preprocess_params
        )
        self.assertEqual(
            {"audio": ANY(np.ndarray), "sampling_rate": 24000},
            outputs,
        )

158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
    @slow
    @require_torch
    def test_vits_model_pt(self):
        speech_generator = pipeline(task="text-to-audio", model="facebook/mms-tts-eng", framework="pt")

        outputs = speech_generator("This is a test")
        self.assertEqual(outputs["sampling_rate"], 16000)

        audio = outputs["audio"]
        self.assertEqual(ANY(np.ndarray), audio)

        # test two examples side-by-side
        outputs = speech_generator(["This is a test", "This is a second test"])
        audio = [output["audio"] for output in outputs]
        self.assertEqual([ANY(np.ndarray), ANY(np.ndarray)], audio)

        # test batching
        outputs = speech_generator(["This is a test", "This is a second test"], batch_size=2)
        self.assertEqual(ANY(np.ndarray), outputs[0]["audio"])

178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
    @slow
    @require_torch
    def test_forward_model_kwargs(self):
        # use vits - a forward model
        speech_generator = pipeline(task="text-to-audio", model="kakao-enterprise/vits-vctk", framework="pt")

        # for reproducibility
        set_seed(555)
        outputs = speech_generator("This is a test", forward_params={"speaker_id": 5})
        audio = outputs["audio"]

        with self.assertRaises(TypeError):
            # assert error if generate parameter
            outputs = speech_generator("This is a test", forward_params={"speaker_id": 5, "do_sample": True})

        forward_params = {"speaker_id": 5}
        generate_kwargs = {"do_sample": True}

        with self.assertRaises(ValueError):
            # assert error if generate_kwargs with forward-only models
            outputs = speech_generator(
                "This is a test", forward_params=forward_params, generate_kwargs=generate_kwargs
            )
        self.assertTrue(np.abs(outputs["audio"] - audio).max() < 1e-5)

    @slow
    @require_torch
    def test_generative_model_kwargs(self):
        # use musicgen - a generative model
        music_generator = pipeline(task="text-to-audio", model="facebook/musicgen-small", framework="pt")

        forward_params = {
            "do_sample": True,
            "max_new_tokens": 250,
        }

        # for reproducibility
        set_seed(555)
        outputs = music_generator("This is a test", forward_params=forward_params)
        audio = outputs["audio"]
        self.assertEqual(ANY(np.ndarray), audio)

        # make sure generate kwargs get priority over forward params
        forward_params = {
            "do_sample": False,
            "max_new_tokens": 250,
        }
        generate_kwargs = {"do_sample": True}

        # for reproducibility
        set_seed(555)
        outputs = music_generator("This is a test", forward_params=forward_params, generate_kwargs=generate_kwargs)
        self.assertListEqual(outputs["audio"].tolist(), audio.tolist())

232
233
234
235
236
237
238
239
    def get_test_pipeline(self, model, tokenizer, processor):
        speech_generator = TextToAudioPipeline(model=model, tokenizer=tokenizer)
        return speech_generator, ["This is a test", "Another test"]

    def run_pipeline_test(self, speech_generator, _):
        outputs = speech_generator("This is a test")
        self.assertEqual(ANY(np.ndarray), outputs["audio"])

240
241
242
        forward_params = (
            {"num_return_sequences": 2, "do_sample": True} if speech_generator.model.can_generate() else {}
        )
243
244
245
        outputs = speech_generator(["This is great !", "Something else"], forward_params=forward_params)
        audio = [output["audio"] for output in outputs]
        self.assertEqual([ANY(np.ndarray), ANY(np.ndarray)], audio)