"...lm-evaluation-harness.git" did not exist on "d5d1921935522a94cbe627ab92284e893a8eafb2"
modeling_bert_test.py 15.7 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import unittest
import shutil
import pytest

23
from transformers import is_torch_available
thomwolf's avatar
thomwolf committed
24

25
26
from .modeling_common_test import (CommonTestCases, ids_tensor)
from .configuration_common_test import ConfigTester
thomwolf's avatar
thomwolf committed
27

28
if is_torch_available():
29
    from transformers import (BertConfig, BertModel, BertForMaskedLM,
R茅mi Louf's avatar
R茅mi Louf committed
30
31
                              BertForNextSentencePrediction, BertForPreTraining,
                              BertForQuestionAnswering, BertForSequenceClassification,
R茅mi Louf's avatar
R茅mi Louf committed
32
                              BertForTokenClassification, BertForMultipleChoice, Bert2Rnd)
33
    from transformers.modeling_bert import BERT_PRETRAINED_MODEL_ARCHIVE_MAP
34
else:
thomwolf's avatar
thomwolf committed
35
36
    pytestmark = pytest.mark.skip("Require Torch")

thomwolf's avatar
thomwolf committed
37

thomwolf's avatar
thomwolf committed
38
39
40
class BertModelTest(CommonTestCases.CommonModelTester):

    all_model_classes = (BertModel, BertForMaskedLM, BertForNextSentencePrediction,
R茅mi Louf's avatar
R茅mi Louf committed
41
42
                         BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification,
                         BertForTokenClassification) if is_torch_available() else ()
thomwolf's avatar
thomwolf committed
43

thomwolf's avatar
thomwolf committed
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
    class BertModelTester(object):

        def __init__(self,
                     parent,
                     batch_size=13,
                     seq_length=7,
                     is_training=True,
                     use_input_mask=True,
                     use_token_type_ids=True,
                     use_labels=True,
                     vocab_size=99,
                     hidden_size=32,
                     num_hidden_layers=5,
                     num_attention_heads=4,
                     intermediate_size=37,
                     hidden_act="gelu",
                     hidden_dropout_prob=0.1,
                     attention_probs_dropout_prob=0.1,
                     max_position_embeddings=512,
                     type_vocab_size=16,
                     type_sequence_label_size=2,
                     initializer_range=0.02,
                     num_labels=3,
                     num_choices=4,
                     scope=None,
R茅mi Louf's avatar
R茅mi Louf committed
69
                     ):
thomwolf's avatar
thomwolf committed
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
            self.parent = parent
            self.batch_size = batch_size
            self.seq_length = seq_length
            self.is_training = is_training
            self.use_input_mask = use_input_mask
            self.use_token_type_ids = use_token_type_ids
            self.use_labels = use_labels
            self.vocab_size = vocab_size
            self.hidden_size = hidden_size
            self.num_hidden_layers = num_hidden_layers
            self.num_attention_heads = num_attention_heads
            self.intermediate_size = intermediate_size
            self.hidden_act = hidden_act
            self.hidden_dropout_prob = hidden_dropout_prob
            self.attention_probs_dropout_prob = attention_probs_dropout_prob
            self.max_position_embeddings = max_position_embeddings
            self.type_vocab_size = type_vocab_size
            self.type_sequence_label_size = type_sequence_label_size
            self.initializer_range = initializer_range
            self.num_labels = num_labels
            self.num_choices = num_choices
            self.scope = scope

        def prepare_config_and_inputs(self):
            input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

            input_mask = None
            if self.use_input_mask:
                input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)

            token_type_ids = None
            if self.use_token_type_ids:
                token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

            sequence_labels = None
            token_labels = None
            choice_labels = None
            if self.use_labels:
                sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
                token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
                choice_labels = ids_tensor([self.batch_size], self.num_choices)

            config = BertConfig(
                vocab_size_or_config_json_file=self.vocab_size,
                hidden_size=self.hidden_size,
                num_hidden_layers=self.num_hidden_layers,
                num_attention_heads=self.num_attention_heads,
                intermediate_size=self.intermediate_size,
                hidden_act=self.hidden_act,
                hidden_dropout_prob=self.hidden_dropout_prob,
                attention_probs_dropout_prob=self.attention_probs_dropout_prob,
                max_position_embeddings=self.max_position_embeddings,
                type_vocab_size=self.type_vocab_size,
                initializer_range=self.initializer_range)

            return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels

        def check_loss_output(self, result):
            self.parent.assertListEqual(
                list(result["loss"].size()),
                [])

        def create_and_check_bert_model(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels):
            model = BertModel(config=config)
            model.eval()
135
136
            sequence_output, pooled_output = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
            sequence_output, pooled_output = model(input_ids, token_type_ids=token_type_ids)
thomwolf's avatar
thomwolf committed
137
            sequence_output, pooled_output = model(input_ids)
thomwolf's avatar
thomwolf committed
138
139
140
141
142
143
144
145
146
147
148
149
150

            result = {
                "sequence_output": sequence_output,
                "pooled_output": pooled_output,
            }
            self.parent.assertListEqual(
                list(result["sequence_output"].size()),
                [self.batch_size, self.seq_length, self.hidden_size])
            self.parent.assertListEqual(list(result["pooled_output"].size()), [self.batch_size, self.hidden_size])

        def create_and_check_bert_for_masked_lm(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels):
            model = BertForMaskedLM(config=config)
            model.eval()
151
            loss, prediction_scores = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, masked_lm_labels=token_labels)
thomwolf's avatar
thomwolf committed
152
153
154
155
156
157
158
159
160
161
162
163
            result = {
                "loss": loss,
                "prediction_scores": prediction_scores,
            }
            self.parent.assertListEqual(
                list(result["prediction_scores"].size()),
                [self.batch_size, self.seq_length, self.vocab_size])
            self.check_loss_output(result)

        def create_and_check_bert_for_next_sequence_prediction(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels):
            model = BertForNextSentencePrediction(config=config)
            model.eval()
164
            loss, seq_relationship_score = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, next_sentence_label=sequence_labels)
thomwolf's avatar
thomwolf committed
165
166
167
168
169
170
171
172
173
174
175
176
            result = {
                "loss": loss,
                "seq_relationship_score": seq_relationship_score,
            }
            self.parent.assertListEqual(
                list(result["seq_relationship_score"].size()),
                [self.batch_size, 2])
            self.check_loss_output(result)

        def create_and_check_bert_for_pretraining(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels):
            model = BertForPreTraining(config=config)
            model.eval()
177
178
            loss, prediction_scores, seq_relationship_score = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids,
                                                                    masked_lm_labels=token_labels, next_sentence_label=sequence_labels)
thomwolf's avatar
thomwolf committed
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
            result = {
                "loss": loss,
                "prediction_scores": prediction_scores,
                "seq_relationship_score": seq_relationship_score,
            }
            self.parent.assertListEqual(
                list(result["prediction_scores"].size()),
                [self.batch_size, self.seq_length, self.vocab_size])
            self.parent.assertListEqual(
                list(result["seq_relationship_score"].size()),
                [self.batch_size, 2])
            self.check_loss_output(result)

        def create_and_check_bert_for_question_answering(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels):
            model = BertForQuestionAnswering(config=config)
            model.eval()
195
196
            loss, start_logits, end_logits = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids,
                                                   start_positions=sequence_labels, end_positions=sequence_labels)
thomwolf's avatar
thomwolf committed
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
            result = {
                "loss": loss,
                "start_logits": start_logits,
                "end_logits": end_logits,
            }
            self.parent.assertListEqual(
                list(result["start_logits"].size()),
                [self.batch_size, self.seq_length])
            self.parent.assertListEqual(
                list(result["end_logits"].size()),
                [self.batch_size, self.seq_length])
            self.check_loss_output(result)

        def create_and_check_bert_for_sequence_classification(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels):
            config.num_labels = self.num_labels
            model = BertForSequenceClassification(config)
            model.eval()
214
            loss, logits = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels)
thomwolf's avatar
thomwolf committed
215
216
217
218
219
220
221
222
223
224
225
226
227
            result = {
                "loss": loss,
                "logits": logits,
            }
            self.parent.assertListEqual(
                list(result["logits"].size()),
                [self.batch_size, self.num_labels])
            self.check_loss_output(result)

        def create_and_check_bert_for_token_classification(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels):
            config.num_labels = self.num_labels
            model = BertForTokenClassification(config=config)
            model.eval()
228
            loss, logits = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
thomwolf's avatar
thomwolf committed
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
            result = {
                "loss": loss,
                "logits": logits,
            }
            self.parent.assertListEqual(
                list(result["logits"].size()),
                [self.batch_size, self.seq_length, self.num_labels])
            self.check_loss_output(result)

        def create_and_check_bert_for_multiple_choice(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels):
            config.num_choices = self.num_choices
            model = BertForMultipleChoice(config=config)
            model.eval()
            multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
            multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
            multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
            loss, logits = model(multiple_choice_inputs_ids,
246
247
248
                                 attention_mask=multiple_choice_input_mask,
                                 token_type_ids=multiple_choice_token_type_ids,
                                 labels=choice_labels)
thomwolf's avatar
thomwolf committed
249
250
251
252
253
254
255
256
257
            result = {
                "loss": loss,
                "logits": logits,
            }
            self.parent.assertListEqual(
                list(result["logits"].size()),
                [self.batch_size, self.num_choices])
            self.check_loss_output(result)

R茅mi Louf's avatar
R茅mi Louf committed
258
259
        def create_and_check_bert2bert(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels):
            config.num_choices = self.num_choices
R茅mi Louf's avatar
R茅mi Louf committed
260
            model = Bert2Rnd(config=config)
R茅mi Louf's avatar
R茅mi Louf committed
261
262
263
264
265
266
267
            model.eval()
            bert2bert_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
            bert2bert_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
            bert2bert_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
            _ = model(bert2bert_inputs_ids,
                      attention_mask=bert2bert_input_mask,
                      token_type_ids=bert2bert_token_type_ids)
thomwolf's avatar
thomwolf committed
268

thomwolf's avatar
thomwolf committed
269
270
271
272
        def prepare_config_and_inputs_for_common(self):
            config_and_inputs = self.prepare_config_and_inputs()
            (config, input_ids, token_type_ids, input_mask,
             sequence_labels, token_labels, choice_labels) = config_and_inputs
thomwolf's avatar
thomwolf committed
273
            inputs_dict = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
thomwolf's avatar
thomwolf committed
274
            return config, inputs_dict
thomwolf's avatar
thomwolf committed
275

thomwolf's avatar
thomwolf committed
276
277
278
    def setUp(self):
        self.model_tester = BertModelTest.BertModelTester(self)
        self.config_tester = ConfigTester(self, config_class=BertConfig, hidden_size=37)
thomwolf's avatar
thomwolf committed
279
280

    def test_config(self):
thomwolf's avatar
thomwolf committed
281
        self.config_tester.run_common_tests()
thomwolf's avatar
thomwolf committed
282

thomwolf's avatar
thomwolf committed
283
284
285
    def test_bert_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_bert_model(*config_and_inputs)
thomwolf's avatar
thomwolf committed
286

thomwolf's avatar
thomwolf committed
287
288
289
    def test_for_masked_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_bert_for_masked_lm(*config_and_inputs)
thomwolf's avatar
thomwolf committed
290

thomwolf's avatar
thomwolf committed
291
292
293
    def test_for_multiple_choice(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_bert_for_multiple_choice(*config_and_inputs)
thomwolf's avatar
thomwolf committed
294

thomwolf's avatar
thomwolf committed
295
296
297
    def test_for_next_sequence_prediction(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_bert_for_next_sequence_prediction(*config_and_inputs)
thomwolf's avatar
thomwolf committed
298

thomwolf's avatar
thomwolf committed
299
300
301
    def test_for_pretraining(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_bert_for_pretraining(*config_and_inputs)
thomwolf's avatar
thomwolf committed
302

thomwolf's avatar
thomwolf committed
303
304
305
    def test_for_question_answering(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_bert_for_question_answering(*config_and_inputs)
thomwolf's avatar
thomwolf committed
306

thomwolf's avatar
thomwolf committed
307
308
309
    def test_for_sequence_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_bert_for_sequence_classification(*config_and_inputs)
thomwolf's avatar
thomwolf committed
310

thomwolf's avatar
thomwolf committed
311
312
313
    def test_for_token_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_bert_for_token_classification(*config_and_inputs)
thomwolf's avatar
thomwolf committed
314

thomwolf's avatar
thomwolf committed
315
316
    @pytest.mark.slow
    def test_model_from_pretrained(self):
317
        cache_dir = "/tmp/transformers_test/"
thomwolf's avatar
thomwolf committed
318
319
320
321
        for model_name in list(BERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
            model = BertModel.from_pretrained(model_name, cache_dir=cache_dir)
            shutil.rmtree(cache_dir)
            self.assertIsNotNone(model)
thomwolf's avatar
thomwolf committed
322

R茅mi Louf's avatar
R茅mi Louf committed
323

thomwolf's avatar
thomwolf committed
324
325
if __name__ == "__main__":
    unittest.main()