"sgl-router/src/routers/grpc/regular/responses/tool_loop.rs" did not exist on "d7f0d88fa2d3ef044091565c5c86c54784c812b3"
pregenerate_training_data.py 12.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
# Step 1: Slurp the dataset up, tokenize each sentence, and store as docs -> sentences -> tokens
# Step 2: Walk over the dataset, using the Google BERT logic to concatenate sentences into training examples
# Step 3: Write out the examples, possibly as Torch tensors?

from argparse import ArgumentParser
from pathlib import Path
from tqdm import tqdm, trange

from random import random, randint, shuffle, choice, sample
from pytorch_pretrained_bert.tokenization import BertTokenizer

import json


class DocumentDatabase:
    def __init__(self, document_list):
        self.document_list = document_list
        self.doc_starts = {}
        self.weighted_doc_samples = []
        i = 0
        for doc_idx, doc in enumerate(document_list):
            self.doc_starts[doc_idx] = i
            self.weighted_doc_samples.extend([doc_idx] * len(doc))
            i += len(doc)

    def sample_doc(self, current_idx, sentence_weighted=True):
        # Uses the current iteration counter to ensure we don't sample the same doc twice
        if sentence_weighted:
            num_sentences = len(self.document_list[current_idx])
            # This very painful line randomly selects a document, weighted by the number of sentences they contain,
            # while guaranteeing that it won't return the original document
            sampled_val = (
                    (self.doc_starts[current_idx] + num_sentences
                     + randint(0, len(self.weighted_doc_samples) - num_sentences - 1))
                    % len(self.weighted_doc_samples))
            sampled_doc_index = self.weighted_doc_samples[sampled_val]
        else:
            # If we don't use sentence weighting, then every doc has an equal chance to be chosen
            sampled_doc_index = current_idx + randint(1, len(self.document_list)-1)
        assert sampled_doc_index != current_idx
        return self.document_list[sampled_doc_index]

    def __len__(self):
        return len(self.document_list)

    def __getitem__(self, item):
        return self.document_list[item]


def truncate_seq_pair(tokens_a, tokens_b, max_num_tokens):
    """Truncates a pair of sequences to a maximum sequence length. Lifted from Google's BERT repo."""
    while True:
        total_length = len(tokens_a) + len(tokens_b)
        if total_length <= max_num_tokens:
            break

        trunc_tokens = tokens_a if len(tokens_a) > len(tokens_b) else tokens_b
        assert len(trunc_tokens) >= 1

        # We want to sometimes truncate from the front and sometimes from the
        # back to add more randomness and avoid biases.
        if random() < 0.5:
            del trunc_tokens[0]
        else:
            trunc_tokens.pop()


def create_masked_lm_predictions(tokens, masked_lm_prob, max_predictions_per_seq, vocab_list):
    """Creates the predictions for the masked LM objective. This is mostly copied from the Google BERT repo, but
    with several refactors to clean it up and remove a lot of unnecessary variables."""
    cand_indices = []
    for (i, token) in enumerate(tokens):
        if token == "[CLS]" or token == "[SEP]":
            continue
        cand_indices.append(i)

    num_to_mask = min(max_predictions_per_seq,
                      max(1, int(round(len(tokens) * masked_lm_prob))))
    shuffle(cand_indices)
    mask_indices = sorted(sample(cand_indices, num_to_mask))
    masked_token_labels = []
    for index in mask_indices:
        # 80% of the time, replace with [MASK]
        if random() < 0.8:
            masked_token = "[MASK]"
        else:
            # 10% of the time, keep original
            if random() < 0.5:
                masked_token = tokens[index]
            # 10% of the time, replace with random word
            else:
                masked_token = choice(vocab_list)
        masked_token_labels.append(tokens[index])
        # Once we've saved the true label for that token, we can overwrite it with the masked version
        tokens[index] = masked_token

    return tokens, mask_indices, masked_token_labels


def create_instances_from_document(
        doc_database, doc_idx, max_seq_length, short_seq_prob,
        masked_lm_prob, max_predictions_per_seq, vocab_list):
    """This code is mostly a duplicate of the equivalent function from Google BERT's repo.
    However, we make some changes and improvements. Sampling is improved and no longer requires a loop in this function.
    Also, documents are sampled proportionally to the number of sentences they contain, which means each sentence
    (rather than each document) has an equal chance of being sampled as a false example for the NextSentence task."""
    document = doc_database[doc_idx]
    # Account for [CLS], [SEP], [SEP]
    max_num_tokens = max_seq_length - 3

    # We *usually* want to fill up the entire sequence since we are padding
    # to `max_seq_length` anyways, so short sequences are generally wasted
    # computation. However, we *sometimes*
    # (i.e., short_seq_prob == 0.1 == 10% of the time) want to use shorter
    # sequences to minimize the mismatch between pre-training and fine-tuning.
    # The `target_seq_length` is just a rough target however, whereas
    # `max_seq_length` is a hard limit.
    target_seq_length = max_num_tokens
    if random() < short_seq_prob:
        target_seq_length = randint(2, max_num_tokens)

    # We DON'T just concatenate all of the tokens from a document into a long
    # sequence and choose an arbitrary split point because this would make the
    # next sentence prediction task too easy. Instead, we split the input into
    # segments "A" and "B" based on the actual "sentences" provided by the user
    # input.
    instances = []
    current_chunk = []
    current_length = 0
    i = 0
    while i < len(document):
        segment = document[i]
        current_chunk.append(segment)
        current_length += len(segment)
        if i == len(document) - 1 or current_length >= target_seq_length:
            if current_chunk:
                # `a_end` is how many segments from `current_chunk` go into the `A`
                # (first) sentence.
                a_end = 1
                if len(current_chunk) >= 2:
                    a_end = randint(1, len(current_chunk) - 1)

                tokens_a = []
                for j in range(a_end):
                    tokens_a.extend(current_chunk[j])

                tokens_b = []

                # Random next
                if len(current_chunk) == 1 or random() < 0.5:
                    is_random_next = True
                    target_b_length = target_seq_length - len(tokens_a)

154
                    # Sample a random document, with longer docs being sampled more frequently
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
                    random_document = doc_database.sample_doc(current_idx=doc_idx, sentence_weighted=True)

                    random_start = randint(0, len(random_document) - 1)
                    for j in range(random_start, len(random_document)):
                        tokens_b.extend(random_document[j])
                        if len(tokens_b) >= target_b_length:
                            break
                    # We didn't actually use these segments so we "put them back" so
                    # they don't go to waste.
                    num_unused_segments = len(current_chunk) - a_end
                    i -= num_unused_segments
                # Actual next
                else:
                    is_random_next = False
                    for j in range(a_end, len(current_chunk)):
                        tokens_b.extend(current_chunk[j])
                truncate_seq_pair(tokens_a, tokens_b, max_num_tokens)

                assert len(tokens_a) >= 1
                assert len(tokens_b) >= 1

                tokens = ["[CLS]"] + tokens_a + ["[SEP]"] + tokens_b + ["[SEP]"]
                # The segment IDs are 0 for the [CLS] token, the A tokens and the first [SEP]
                # They are 1 for the B tokens and the final [SEP]
                segment_ids = [0 for _ in range(len(tokens_a) + 2)] + [1 for _ in range(len(tokens_b) + 1)]

                tokens, masked_lm_positions, masked_lm_labels = create_masked_lm_predictions(
                    tokens, masked_lm_prob, max_predictions_per_seq, vocab_list)

                instance = {
                    "tokens": tokens,
                    "segment_ids": segment_ids,
                    "is_random_next": is_random_next,
                    "masked_lm_positions": masked_lm_positions,
                    "masked_lm_labels": masked_lm_labels}
                instances.append(instance)
            current_chunk = []
            current_length = 0
        i += 1

    return instances


def main():
    parser = ArgumentParser()
200
201
    parser.add_argument('--train_corpus', type=Path, required=True)
    parser.add_argument("--output_dir", type=Path, required=True)
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
    parser.add_argument("--bert_model", type=str, required=True,
                        choices=["bert-base-uncased", "bert-large-uncased", "bert-base-cased",
                                 "bert-base-multilingual", "bert-base-chinese"])
    parser.add_argument("--do_lower_case", action="store_true")

    parser.add_argument("--epochs_to_generate", type=int, default=3,
                        help="Number of epochs of data to pregenerate")
    parser.add_argument("--max_seq_len", type=int, default=128)
    parser.add_argument("--short_seq_prob", type=float, default=0.1,
                        help="Probability of making a short sentence as a training example")
    parser.add_argument("--masked_lm_prob", type=float, default=0.15,
                        help="Probability of masking each token for the LM task")
    parser.add_argument("--max_predictions_per_seq", type=int, default=20,
                        help="Maximum number of tokens to mask in each sequence")

    args = parser.parse_args()

Matthew Carrigan's avatar
Matthew Carrigan committed
219
220
221
222
    # TODO Add a low-memory / multiprocessing path for very large datasets
    #      In this path documents would be stored in a shelf after being tokenized, and multiple processes would convert
    #      those docs into training examples that would be written out on the fly. This would avoid the need to keep
    #      the whole training set in memory and would speed up dataset creation at the cost of code complexity.
223
224
    #      In addition, the finetuning script would need to be modified
    #      to store the training epochs as memmapped arrays.
Matthew Carrigan's avatar
Matthew Carrigan committed
225

226
227
    tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case)
    vocab_list = list(tokenizer.vocab.keys())
228
    with args.train_corpus.open() as f:
229
230
231
232
233
234
235
236
237
238
239
        docs = []
        doc = []
        for line in tqdm(f, desc="Loading Dataset"):
            line = line.strip()
            if line == "":
                docs.append(doc)
                doc = []
            else:
                tokens = tokenizer.tokenize(line)
                doc.append(tokens)

240
    args.output_dir.mkdir(exist_ok=True)
241
242
243
244
    docs = DocumentDatabase(docs)
    # When choosing a random sentence, we should sample docs proportionally to the number of sentences they contain
    # Google BERT doesn't do this, and as a result oversamples shorter docs
    for epoch in trange(args.epochs_to_generate, desc="Epoch"):
245
246
247
248
249
250
251
252
253
254
255
256
        epoch_filename = args.output_dir / f"epoch_{epoch}.json"
        num_instances = 0
        with epoch_filename.open('w') as epoch_file:
            for doc_idx in trange(len(docs), desc="Document"):
                doc_instances = create_instances_from_document(
                    docs, doc_idx, max_seq_length=args.max_seq_len, short_seq_prob=args.short_seq_prob,
                    masked_lm_prob=args.masked_lm_prob, max_predictions_per_seq=args.max_predictions_per_seq,
                    vocab_list=vocab_list)
                doc_instances = [json.dumps(instance) for instance in doc_instances]
                for instance in doc_instances:
                    epoch_file.write(instance + '\n')
                    num_instances += 1
257
        metrics_file = args.output_dir / f"epoch_{epoch}_metrics.json"
258
259
        with metrics_file.open('w') as metrics_file:
            metrics = {
260
                "num_training_examples": num_instances,
261
262
263
264
265
266
267
                "max_seq_len": args.max_seq_len
            }
            metrics_file.write(json.dumps(metrics))


if __name__ == '__main__':
    main()