test_processing_fuyu.py 19.1 KB
Newer Older
Pablo Montalvo's avatar
Pablo Montalvo committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
import io
import unittest

import requests

from transformers import AutoTokenizer, is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_torch_gpu, slow


if is_vision_available():
    from PIL import Image

if is_vision_available() and is_torch_available():
    from transformers import FuyuImageProcessor, FuyuProcessor

if is_torch_available():
    import torch

    from transformers.models.fuyu.processing_fuyu import construct_full_unpacked_stream, full_unpacked_stream_to_tensor


@require_torch
@require_torch_gpu
@slow
class FuyuProcessingTest(unittest.TestCase):  # TODO Which mixins do we add here?
    """ """

    def setUp(self):
29
30
31
        pretrained_model_name = "adept/fuyu-8b"
        self.tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name)
        self.image_processor = FuyuImageProcessor()
Pablo Montalvo's avatar
Pablo Montalvo committed
32

33
34
        self.processor = FuyuProcessor(image_processor=self.image_processor, tokenizer=self.tokenizer)
        self.text_prompt = "Generate a coco-style caption.\\n"
Pablo Montalvo's avatar
Pablo Montalvo committed
35
        bus_image_url = "https://huggingface.co/datasets/hf-internal-testing/fixtures-captioning/resolve/main/bus.png"
36
        self.bus_image_pil = Image.open(io.BytesIO(requests.get(bus_image_url).content))
Pablo Montalvo's avatar
Pablo Montalvo committed
37
38
39
40
41
42
43
44

    def test_fuyu_processing(self):
        """
        Test to ensure that the standard processing on a gold example matches adept's code.
        """
        # fmt: off
        EXPECTED_IMAGE_PATCH_INPUTS = torch.Tensor([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, -1, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, -1, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, -1, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, -1, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, -1, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, -1, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, -1, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, -1, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, -1, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, -1, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, -1, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, -1, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, -1, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,]]).to(torch.int64)
        EXPECTED_PADDED_UNPACKED_TOKEN_INPUTS = torch.Tensor([[71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71019, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71019, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71019, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71019, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71019, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71019, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71019, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71019, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71019, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71019, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71019, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71019, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71019, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71019, 1, 128340, 71374, 71389, 120412, 71377, 71835, 71374, 73615, 71375, 71399, 71435, 71122,]]).to(torch.int64)
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

        one_image_bus_model_inputs = self.processor(text=self.text_prompt, images=self.bus_image_pil)

        # fmt: on
        torch.testing.assert_close(one_image_bus_model_inputs["image_patches_indices"], EXPECTED_IMAGE_PATCH_INPUTS)
        torch.testing.assert_close(one_image_bus_model_inputs["input_ids"], EXPECTED_PADDED_UNPACKED_TOKEN_INPUTS)

    def test_fuyu_processing_no_image(self):
        """
        Test to check processor works with just text input
        """
        processor_outputs = self.processor(text=self.text_prompt)
        tokenizer_outputs = self.tokenizer(self.text_prompt)
        self.assertEqual(processor_outputs["input_ids"], tokenizer_outputs["input_ids"])

    def test_fuyu_processing_no_text(self):
        """
        Test to check processor works with just image input
        """
        # fmt: off
        EXPECTED_IMAGE_PATCH_INPUTS = torch.Tensor([
            [ 0,   1,   2,   3,   4,   5,   6,   7,   8,   9,  10,  11,  12,  13,
             14,  15,  16,  17,  18,  19,  20,  21,  -1,  22,  23,  24,  25,  26,
             27,  28,  29,  30,  31,  32,  33,  34,  35,  36,  37,  38,  39,  40,
             41,  42,  43,  -1,  44,  45,  46,  47,  48,  49,  50,  51,  52,  53,
             54,  55,  56,  57,  58,  59,  60,  61,  62,  63,  64,  65,  -1,  66,
             67,  68,  69,  70,  71,  72,  73,  74,  75,  76,  77,  78,  79,  80,
             81,  82,  83,  84,  85,  86,  87,  -1,  88,  89,  90,  91,  92,  93,
             94,  95,  96,  97,  98,  99, 100, 101, 102, 103, 104, 105, 106, 107,
             108, 109,  -1, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120,
             121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131,  -1, 132, 133,
             134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147,
             148, 149, 150, 151, 152, 153,  -1, 154, 155, 156, 157, 158, 159, 160,
             161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174,
             175,  -1, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187,
             188, 189, 190, 191, 192, 193, 194, 195, 196, 197,  -1, 198, 199, 200,
             201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214,
             215, 216, 217, 218, 219,  -1, 220, 221, 222, 223, 224, 225, 226, 227,
             228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241,
              -1, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254,
             255, 256, 257, 258, 259, 260, 261, 262, 263,  -1, 264, 265, 266, 267,
             268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281,
             282, 283, 284, 285,  -1, 286, 287, 288, 289, 290, 291, 292, 293, 294,
             295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307,  -1,
             -1,  -1,  -1,  -1,  -1,  -1,  -1,  -1,  -1,  -1,  -1,  -1]
        ]).to(torch.int64)
        # fmt: on

        processor_outputs = self.processor(images=self.bus_image_pil)
        self.assertTrue((processor_outputs["image_patches_indices"] == EXPECTED_IMAGE_PATCH_INPUTS).all())

    def test_fuyu_processing_multiple_image_sample(self):
        """
        Test to check processor works with multiple image inputs for a single text input
        """
        # fmt: off
        SINGLE_IMAGE_PATCH_INPUTS = torch.Tensor([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, -1, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, -1, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, -1, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, -1, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, -1, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, -1, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, -1, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, -1, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, -1, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, -1, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, -1, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, -1, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, -1, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,]]).to(torch.int64)
        SINGLE_PADDED_UNPACKED_TOKEN_INPUTS = torch.Tensor([[71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71019, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71019, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71019, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71019, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71019, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71019, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71019, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71019, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71019, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71019, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71019, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71019, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71019, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71019, 1, 128340, 71374, 71389, 120412, 71377, 71835, 71374, 73615, 71375, 71399, 71435, 71122,]]).to(torch.int64)

        SINGLE_RESIZED_IMAGE_PATCH_INPUTS = torch.Tensor([[ 0,  1,  2, -1,  3,  4,  5, -1,  6,  7,  8, -1,  9, 10, 11, -1, 12, 13, 14, -1, 15, 16, 17, -1, 18, 19, 20, -1, 21, 22, 23, -1, 24, 25, 26, -1, 27, 28, 29, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]])
        SINGLE_RESIZED_PADDED_UNPACKED_TOKEN_INPUTS = torch.Tensor([[ 71011,  71011,  71011,  71019,  71011,  71011,  71011,  71019,  71011, 71011,  71011,  71019,  71011,  71011,  71011,  71019,  71011,  71011, 71011,  71019,  71011,  71011,  71011,  71019,  71011,  71011,  71011, 71019,  71011,  71011,  71011,  71019,  71011,  71011,  71011,  71019, 71011,  71011,  71011,  71019,      1, 128340,  71374,  71389, 120412, 71377,  71835,  71374,  73615,  71375,  71399,  71435,  71122]])
Pablo Montalvo's avatar
Pablo Montalvo committed
106
        # fmt: on
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

        # Batch of two images - equally sized
        images = [self.bus_image_pil, self.bus_image_pil]
        processor_outputs = self.processor(text=[self.text_prompt, self.text_prompt], images=images)

        self.assertTrue(
            (
                processor_outputs["image_patches_indices"]
                == torch.cat([SINGLE_IMAGE_PATCH_INPUTS, SINGLE_IMAGE_PATCH_INPUTS], dim=0)
            ).all()
        )
        self.assertTrue(
            (
                processor_outputs["input_ids"]
                == torch.cat([SINGLE_PADDED_UNPACKED_TOKEN_INPUTS, SINGLE_PADDED_UNPACKED_TOKEN_INPUTS], dim=0)
            ).all()
Pablo Montalvo's avatar
Pablo Montalvo committed
123
        )
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157

        # Processes single images with different sizes as expected
        images = [self.bus_image_pil]
        processor_outputs = self.processor(text=self.text_prompt, images=images)
        self.assertTrue((processor_outputs["image_patches_indices"] == SINGLE_IMAGE_PATCH_INPUTS).all())
        self.assertTrue((processor_outputs["input_ids"] == SINGLE_PADDED_UNPACKED_TOKEN_INPUTS).all())

        images = [self.bus_image_pil.resize((64, 300))]
        processor_outputs = self.processor(text=self.text_prompt, images=images)
        self.assertTrue((processor_outputs["image_patches_indices"] == SINGLE_RESIZED_IMAGE_PATCH_INPUTS).all())
        self.assertTrue((processor_outputs["input_ids"] == SINGLE_RESIZED_PADDED_UNPACKED_TOKEN_INPUTS).all())

        # Batch of two images - different sizes. Left-pads the smaller image inputs
        images = [self.bus_image_pil, self.bus_image_pil.resize((64, 300))]
        processor_outputs = self.processor(text=[self.text_prompt, self.text_prompt], images=images)

        padding_len_patch = SINGLE_IMAGE_PATCH_INPUTS.shape[1] - SINGLE_RESIZED_IMAGE_PATCH_INPUTS.shape[1]
        padded_single_resized_image_patch = torch.cat(
            [torch.ones([1, padding_len_patch]) * -1, SINGLE_RESIZED_IMAGE_PATCH_INPUTS], dim=1
        )
        expected_image_patch_inputs = torch.cat([SINGLE_IMAGE_PATCH_INPUTS, padded_single_resized_image_patch], dim=0)

        padding_len_token = (
            SINGLE_PADDED_UNPACKED_TOKEN_INPUTS.shape[1] - SINGLE_RESIZED_PADDED_UNPACKED_TOKEN_INPUTS.shape[1]
        )
        padded_single_resized_padded_unpacked_token_inputs = torch.cat(
            [torch.zeros([1, padding_len_token]), SINGLE_RESIZED_PADDED_UNPACKED_TOKEN_INPUTS], dim=1
        )
        expected_padded_unpacked_token_inputs = torch.cat(
            [SINGLE_PADDED_UNPACKED_TOKEN_INPUTS, padded_single_resized_padded_unpacked_token_inputs], dim=0
        )

        self.assertTrue((processor_outputs["image_patches_indices"] == expected_image_patch_inputs).all())
        self.assertTrue((processor_outputs["input_ids"] == expected_padded_unpacked_token_inputs).all())
Pablo Montalvo's avatar
Pablo Montalvo committed
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215


@require_torch
class TestImageTextProcessingUtils(unittest.TestCase):
    def setUp(self):
        self.batch_size = 2
        self.new_seq_len = 8
        self.num_sub_sequences = 1

        self.all_bi_tokens_to_place = [4, 6]
        self.full_unpacked_stream = [torch.tensor([1, 2, 3, 4]), torch.tensor([5, 6, 7, 8, 9, 10])]
        self.fill_value = 0

        self.num_real_text_tokens = [[3, 2], [2, 4]]
        # Here the input stream is padded to avoid inconsistencies (current model release matches)
        self.input_stream = torch.tensor([[[1, 2, 3], [4, 5, 0]], [[6, 7, 0], [8, 9, 10]]])
        self.image_tokens = [
            [torch.tensor([1, 2]), torch.tensor([3])],
            [torch.tensor([4, 5, 6]), torch.tensor([7, 8])],
        ]

    def test_full_unpacked_stream_to_tensor(self):
        result = full_unpacked_stream_to_tensor(
            self.all_bi_tokens_to_place,
            self.full_unpacked_stream,
            self.fill_value,
            self.batch_size,
            self.new_seq_len,
            offset=0,
        )
        EXPECTED_TENSOR = torch.tensor([[1, 2, 3, 4, 0, 0, 0, 0], [5, 6, 7, 8, 9, 10, 0, 0]])
        self.assertTrue(torch.equal(result, EXPECTED_TENSOR))

    def test_construct_full_unpacked_stream(self):
        result = construct_full_unpacked_stream(
            self.num_real_text_tokens, self.input_stream, self.image_tokens, self.batch_size, self.num_sub_sequences
        )
        EXPECTED_UNPACKED_STREAM = [torch.tensor([1, 2, 1, 2, 3]), torch.tensor([4, 5, 6, 6, 7])]
        for i in range(len(result)):
            self.assertTrue(torch.equal(result[i], EXPECTED_UNPACKED_STREAM[i]))


@require_torch
class TestProcessImagesForModelInput(unittest.TestCase):
    def setUp(self):
        """
        Adding a mix of present and absent images.
        """

        self.image_input = torch.randn([1, 1, 3, 64, 64])
        self.image_present = torch.tensor([[1]])
        self.image_unpadded_h = torch.tensor([[45]])  # Adjusted for subsequence of 1
        self.image_unpadded_w = torch.tensor([[50]])  # Adjusted for subsequence of 1
        self.image_patch_dim_h = 16
        self.image_patch_dim_w = 16
        self.image_placeholder_id = 999
        self.image_newline_id = 888
        self.variable_sized = True
216
217
218
        self.image_processor = FuyuImageProcessor(
            patch_size={"height": self.image_patch_dim_h, "width": self.image_patch_dim_w}
        )
Pablo Montalvo's avatar
Pablo Montalvo committed
219
220
221

    def test_process_images_for_model_input_fixed_sized(self):
        self.variable_sized = False
222
        result = self.image_processor.preprocess_with_tokenizer_info(
Pablo Montalvo's avatar
Pablo Montalvo committed
223
224
225
226
227
228
229
230
231
            image_input=self.image_input,
            image_present=self.image_present,
            image_unpadded_h=self.image_unpadded_h,
            image_unpadded_w=self.image_unpadded_w,
            image_placeholder_id=self.image_placeholder_id,
            image_newline_id=self.image_newline_id,
            variable_sized=self.variable_sized,
        )
        self.assertEqual(result["images"][0][0].shape, torch.Size([3, 64, 64]))