"sgl-router/py_test/vscode:/vscode.git/clone" did not exist on "4fe53e588825294580688522e3d3eaf1f14b42f1"
test_modeling_tf_ctrl.py 9.75 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
Sylvain Gugger's avatar
Sylvain Gugger committed
2
# Copyright 2020 The HuggingFace Team. All rights reserved.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16

17
18
import unittest

Aymeric Augustin's avatar
Aymeric Augustin committed
19
from transformers import CTRLConfig, is_tf_available
20
from transformers.testing_utils import require_tf, slow
thomwolf's avatar
thomwolf committed
21

Yih-Dar's avatar
Yih-Dar committed
22
23
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
24
from ...test_pipeline_mixin import PipelineTesterMixin
thomwolf's avatar
thomwolf committed
25
26
27


if is_tf_available():
patrickvonplaten's avatar
patrickvonplaten committed
28
    import tensorflow as tf
29

Sylvain Gugger's avatar
Sylvain Gugger committed
30
31
    from transformers.models.ctrl.modeling_tf_ctrl import (
        TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST,
32
        TFCTRLForSequenceClassification,
Sylvain Gugger's avatar
Sylvain Gugger committed
33
34
35
        TFCTRLLMHeadModel,
        TFCTRLModel,
    )
thomwolf's avatar
thomwolf committed
36
37


38
39
class TFCTRLModelTester(object):
    def __init__(
Lysandre's avatar
Lysandre committed
40
41
        self,
        parent,
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
    ):
        self.parent = parent
        self.batch_size = 13
        self.seq_length = 7
        self.is_training = True
        self.use_token_type_ids = True
        self.use_input_mask = True
        self.use_labels = True
        self.use_mc_token_ids = True
        self.vocab_size = 99
        self.hidden_size = 32
        self.num_hidden_layers = 5
        self.num_attention_heads = 4
        self.intermediate_size = 37
        self.hidden_act = "gelu"
        self.hidden_dropout_prob = 0.1
        self.attention_probs_dropout_prob = 0.1
        self.max_position_embeddings = 512
        self.type_vocab_size = 16
        self.type_sequence_label_size = 2
        self.initializer_range = 0.02
        self.num_labels = 3
        self.num_choices = 4
        self.scope = None
66
        self.pad_token_id = self.vocab_size - 1
67
68
69
70
71
72

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
73
            input_mask = random_attention_mask([self.batch_size, self.seq_length])
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

        mc_token_ids = None
        if self.use_mc_token_ids:
            mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length)

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

        config = CTRLConfig(
            vocab_size=self.vocab_size,
            n_embd=self.hidden_size,
            n_layer=self.num_hidden_layers,
            n_head=self.num_attention_heads,
            # intermediate_size=self.intermediate_size,
            # hidden_act=self.hidden_act,
            # hidden_dropout_prob=self.hidden_dropout_prob,
            # attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            n_positions=self.max_position_embeddings,
            # type_vocab_size=self.type_vocab_size,
Sylvain Gugger's avatar
Sylvain Gugger committed
102
            # initializer_range=self.initializer_range,
103
            pad_token_id=self.pad_token_id,
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
        )

        head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2)

        return (
            config,
            input_ids,
            input_mask,
            head_mask,
            token_type_ids,
            mc_token_ids,
            sequence_labels,
            token_labels,
            choice_labels,
        )

    def create_and_check_ctrl_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
        model = TFCTRLModel(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
123
        result = model(inputs)
124
125

        inputs = [input_ids, None, input_mask]  # None is the input for 'past'
Sylvain Gugger's avatar
Sylvain Gugger committed
126
        result = model(inputs)
127

Sylvain Gugger's avatar
Sylvain Gugger committed
128
        result = model(input_ids)
129

130
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
131
132
133
134

    def create_and_check_ctrl_lm_head(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
        model = TFCTRLLMHeadModel(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
135
        result = model(inputs)
136
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
137

138
139
140
141
142
143
144
145
146
147
148
149
150
151
    def create_and_check_ctrl_for_sequence_classification(
        self, config, input_ids, input_mask, head_mask, token_type_ids, *args
    ):
        config.num_labels = self.num_labels
        sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
        inputs = {
            "input_ids": input_ids,
            "token_type_ids": token_type_ids,
            "labels": sequence_labels,
        }
        model = TFCTRLForSequenceClassification(config)
        result = model(inputs)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))

152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()

        (
            config,
            input_ids,
            input_mask,
            head_mask,
            token_type_ids,
            mc_token_ids,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs

        inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
        return config, inputs_dict


171
@require_tf
172
class TFCTRLModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
173
    all_model_classes = (TFCTRLModel, TFCTRLLMHeadModel, TFCTRLForSequenceClassification) if is_tf_available() else ()
174
    all_generative_model_classes = (TFCTRLLMHeadModel,) if is_tf_available() else ()
175
176
177
178
179
180
181
182
183
184
    pipeline_model_mapping = (
        {
            "feature-extraction": TFCTRLModel,
            "text-classification": TFCTRLForSequenceClassification,
            "text-generation": TFCTRLLMHeadModel,
            "zero-shot": TFCTRLForSequenceClassification,
        }
        if is_tf_available()
        else {}
    )
185
    test_head_masking = False
186
    test_onnx = False
thomwolf's avatar
thomwolf committed
187
188

    def setUp(self):
189
        self.model_tester = TFCTRLModelTester(self)
thomwolf's avatar
thomwolf committed
190
191
192
193
194
195
196
197
198
199
200
201
202
        self.config_tester = ConfigTester(self, config_class=CTRLConfig, n_embd=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_ctrl_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_ctrl_model(*config_and_inputs)

    def test_ctrl_lm_head(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_ctrl_lm_head(*config_and_inputs)

203
204
205
206
    def test_ctrl_sequence_classification_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_ctrl_for_sequence_classification(*config_and_inputs)

207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
    def test_model_common_attributes(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        list_lm_models = [TFCTRLLMHeadModel]
        list_other_models_with_output_ebd = [TFCTRLForSequenceClassification]

        for model_class in self.all_model_classes:
            model = model_class(config)
            assert isinstance(model.get_input_embeddings(), tf.keras.layers.Layer)

            if model_class in list_lm_models:
                x = model.get_output_embeddings()
                assert isinstance(x, tf.keras.layers.Layer)
                name = model.get_bias()
                assert isinstance(name, dict)
                for k, v in name.items():
                    assert isinstance(v, tf.Variable)
            elif model_class in list_other_models_with_output_ebd:
                x = model.get_output_embeddings()
                assert isinstance(x, tf.keras.layers.Layer)
                name = model.get_bias()
                assert name is None
            else:
                x = model.get_output_embeddings()
                assert x is None
                name = model.get_bias()
                assert name is None

234
    @slow
thomwolf's avatar
thomwolf committed
235
    def test_model_from_pretrained(self):
236
        for model_name in TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
237
            model = TFCTRLModel.from_pretrained(model_name)
thomwolf's avatar
thomwolf committed
238
            self.assertIsNotNone(model)
patrickvonplaten's avatar
patrickvonplaten committed
239
240


241
@require_tf
patrickvonplaten's avatar
patrickvonplaten committed
242
243
244
245
class TFCTRLModelLanguageGenerationTest(unittest.TestCase):
    @slow
    def test_lm_generate_ctrl(self):
        model = TFCTRLLMHeadModel.from_pretrained("ctrl")
Patrick von Platen's avatar
Patrick von Platen committed
246
        input_ids = tf.convert_to_tensor([[11859, 0, 1611, 8]], dtype=tf.int32)  # Legal the president is
patrickvonplaten's avatar
patrickvonplaten committed
247
248
        expected_output_ids = [
            11859,
Patrick von Platen's avatar
Patrick von Platen committed
249
250
            0,
            1611,
patrickvonplaten's avatar
patrickvonplaten committed
251
            8,
Patrick von Platen's avatar
Patrick von Platen committed
252
253
254
            5,
            150,
            26449,
patrickvonplaten's avatar
patrickvonplaten committed
255
            2,
Patrick von Platen's avatar
Patrick von Platen committed
256
257
258
            19,
            348,
            469,
patrickvonplaten's avatar
patrickvonplaten committed
259
            3,
Patrick von Platen's avatar
Patrick von Platen committed
260
261
262
263
264
265
266
267
268
            2595,
            48,
            20740,
            246533,
            246533,
            19,
            30,
            5,
        ]  # Legal the president is a good guy and I don't want to lose my job. \n \n I have a
patrickvonplaten's avatar
patrickvonplaten committed
269
270

        output_ids = model.generate(input_ids, do_sample=False)
Patrick von Platen's avatar
Patrick von Platen committed
271
        self.assertListEqual(output_ids[0].numpy().tolist(), expected_output_ids)