test_modeling_bert.py 25.4 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
Sylvain Gugger's avatar
Sylvain Gugger committed
2
# Copyright 2020 The HuggingFace Team. All rights reserved.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Lysandre Debut's avatar
Lysandre Debut committed
15
16
import os
import tempfile
17
18
import unittest

19
from transformers import BertConfig, is_torch_available
20
from transformers.models.auto import get_values
Lysandre Debut's avatar
Lysandre Debut committed
21
from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device
thomwolf's avatar
thomwolf committed
22

23
from ...generation.test_utils import GenerationTesterMixin
Yih-Dar's avatar
Yih-Dar committed
24
25
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
26
from ...test_pipeline_mixin import PipelineTesterMixin
thomwolf's avatar
thomwolf committed
27

Aymeric Augustin's avatar
Aymeric Augustin committed
28

29
if is_torch_available():
30
31
    import torch

32
    from transformers import (
33
        MODEL_FOR_PRETRAINING_MAPPING,
34
        BertForMaskedLM,
35
        BertForMultipleChoice,
36
37
38
39
40
        BertForNextSentencePrediction,
        BertForPreTraining,
        BertForQuestionAnswering,
        BertForSequenceClassification,
        BertForTokenClassification,
41
42
        BertLMHeadModel,
        BertModel,
43
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
44
    from transformers.models.bert.modeling_bert import BERT_PRETRAINED_MODEL_ARCHIVE_LIST
thomwolf's avatar
thomwolf committed
45

thomwolf's avatar
thomwolf committed
46

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
class BertModelTester:
    def __init__(
        self,
        parent,
        batch_size=13,
        seq_length=7,
        is_training=True,
        use_input_mask=True,
        use_token_type_ids=True,
        use_labels=True,
        vocab_size=99,
        hidden_size=32,
        num_hidden_layers=5,
        num_attention_heads=4,
        intermediate_size=37,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=512,
        type_vocab_size=16,
        type_sequence_label_size=2,
        initializer_range=0.02,
        num_labels=3,
        num_choices=4,
        scope=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_input_mask = use_input_mask
        self.use_token_type_ids = use_token_type_ids
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.type_vocab_size = type_vocab_size
        self.type_sequence_label_size = type_sequence_label_size
        self.initializer_range = initializer_range
        self.num_labels = num_labels
        self.num_choices = num_choices
        self.scope = scope

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
101
            input_mask = random_attention_mask([self.batch_size, self.seq_length])
102
103
104
105
106
107
108
109
110
111
112
113
114

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

115
116
117
118
119
120
121
122
123
        config = self.get_config()

        return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels

    def get_config(self):
        """
        Returns a tiny configuration by default.
        """
        return BertConfig(
124
125
126
127
128
129
130
131
132
133
134
135
136
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            type_vocab_size=self.type_vocab_size,
            is_decoder=False,
            initializer_range=self.initializer_range,
        )
thomwolf's avatar
thomwolf committed
137

138
    def prepare_config_and_inputs_for_decoder(self):
139
        (
140
141
142
143
144
145
146
147
148
149
150
151
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = self.prepare_config_and_inputs()

        config.is_decoder = True
        encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size])
        encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
thomwolf's avatar
thomwolf committed
152

153
        return (
154
155
156
157
158
159
160
161
162
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
            encoder_hidden_states,
            encoder_attention_mask,
163
164
        )

165
    def create_and_check_model(
166
167
168
169
170
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = BertModel(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
171
172
173
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
        result = model(input_ids, token_type_ids=token_type_ids)
        result = model(input_ids)
Stas Bekman's avatar
Stas Bekman committed
174
175
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
        self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
176

177
    def create_and_check_model_as_decoder(
178
179
180
181
182
183
184
185
186
187
188
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        encoder_hidden_states,
        encoder_attention_mask,
    ):
189
        config.add_cross_attention = True
190
191
192
        model = BertModel(config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
193
        result = model(
194
195
196
197
198
199
            input_ids,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
        )
Sylvain Gugger's avatar
Sylvain Gugger committed
200
        result = model(
201
202
203
204
205
            input_ids,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
            encoder_hidden_states=encoder_hidden_states,
        )
Sylvain Gugger's avatar
Sylvain Gugger committed
206
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
Stas Bekman's avatar
Stas Bekman committed
207
208
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
        self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
209

210
    def create_and_check_for_causal_lm(
211
212
213
214
215
216
217
218
219
220
221
222
223
224
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        encoder_hidden_states,
        encoder_attention_mask,
    ):
        model = BertLMHeadModel(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
225
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
Stas Bekman's avatar
Stas Bekman committed
226
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
227

228
    def create_and_check_for_masked_lm(
229
230
231
232
233
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = BertForMaskedLM(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
234
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
Stas Bekman's avatar
Stas Bekman committed
235
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
236

237
    def create_and_check_model_for_causal_lm_as_decoder(
238
239
240
241
242
243
244
245
246
247
248
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        encoder_hidden_states,
        encoder_attention_mask,
    ):
249
        config.add_cross_attention = True
250
        model = BertLMHeadModel(config=config)
251
252
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
253
        result = model(
254
255
256
            input_ids,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
257
            labels=token_labels,
258
259
260
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
        )
Sylvain Gugger's avatar
Sylvain Gugger committed
261
        result = model(
262
263
264
            input_ids,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
265
            labels=token_labels,
266
267
            encoder_hidden_states=encoder_hidden_states,
        )
Stas Bekman's avatar
Stas Bekman committed
268
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
269

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
    def create_and_check_decoder_model_past_large_inputs(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        encoder_hidden_states,
        encoder_attention_mask,
    ):
        config.is_decoder = True
        config.add_cross_attention = True
        model = BertLMHeadModel(config=config).to(torch_device).eval()

        # first forward pass
        outputs = model(
            input_ids,
            attention_mask=input_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            use_cache=True,
        )
        past_key_values = outputs.past_key_values

        # create hypothetical multiple next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
        next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)

        # append to next input_ids and
        next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
        next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)

        output_from_no_past = model(
            next_input_ids,
            attention_mask=next_attention_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            output_hidden_states=True,
        )["hidden_states"][0]
        output_from_past = model(
            next_tokens,
            attention_mask=next_attention_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            past_key_values=past_key_values,
            output_hidden_states=True,
        )["hidden_states"][0]

        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()

        self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])

        # test that outputs are equal for slice
        self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))

330
    def create_and_check_for_next_sequence_prediction(
331
332
333
334
335
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = BertForNextSentencePrediction(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
336
        result = model(
Lysandre's avatar
Lysandre committed
337
338
339
            input_ids,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
340
            labels=sequence_labels,
341
        )
Stas Bekman's avatar
Stas Bekman committed
342
        self.parent.assertEqual(result.logits.shape, (self.batch_size, 2))
343

344
    def create_and_check_for_pretraining(
345
346
347
348
349
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = BertForPreTraining(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
350
        result = model(
351
352
353
            input_ids,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
354
            labels=token_labels,
355
356
            next_sentence_label=sequence_labels,
        )
Stas Bekman's avatar
Stas Bekman committed
357
358
        self.parent.assertEqual(result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
        self.parent.assertEqual(result.seq_relationship_logits.shape, (self.batch_size, 2))
359

360
    def create_and_check_for_question_answering(
361
362
363
364
365
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = BertForQuestionAnswering(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
366
        result = model(
367
368
369
370
371
372
            input_ids,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
            start_positions=sequence_labels,
            end_positions=sequence_labels,
        )
Stas Bekman's avatar
Stas Bekman committed
373
374
        self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
        self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
375

376
    def create_and_check_for_sequence_classification(
377
378
379
380
381
382
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_labels = self.num_labels
        model = BertForSequenceClassification(config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
383
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels)
Stas Bekman's avatar
Stas Bekman committed
384
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
385

386
    def create_and_check_for_token_classification(
387
388
389
390
391
392
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_labels = self.num_labels
        model = BertForTokenClassification(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
393
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
Stas Bekman's avatar
Stas Bekman committed
394
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
395

396
    def create_and_check_for_multiple_choice(
397
398
399
400
401
402
403
404
405
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_choices = self.num_choices
        model = BertForMultipleChoice(config=config)
        model.to(torch_device)
        model.eval()
        multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
Sylvain Gugger's avatar
Sylvain Gugger committed
406
        result = model(
407
408
409
410
411
            multiple_choice_inputs_ids,
            attention_mask=multiple_choice_input_mask,
            token_type_ids=multiple_choice_token_type_ids,
            labels=choice_labels,
        )
Stas Bekman's avatar
Stas Bekman committed
412
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
413
414
415
416

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
417
418
419
420
421
422
423
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
424
425
426
427
428
429
        ) = config_and_inputs
        inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
        return config, inputs_dict


@require_torch
430
class BertModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
431
432
433
    all_model_classes = (
        (
            BertModel,
434
            BertLMHeadModel,
435
            BertForMaskedLM,
436
            BertForMultipleChoice,
437
438
439
440
441
442
443
444
445
            BertForNextSentencePrediction,
            BertForPreTraining,
            BertForQuestionAnswering,
            BertForSequenceClassification,
            BertForTokenClassification,
        )
        if is_torch_available()
        else ()
    )
446
    all_generative_model_classes = (BertLMHeadModel,) if is_torch_available() else ()
447
448
449
450
451
452
453
454
455
456
457
458
459
    pipeline_model_mapping = (
        {
            "feature-extraction": BertModel,
            "fill-mask": BertForMaskedLM,
            "question-answering": BertForQuestionAnswering,
            "text-classification": BertForSequenceClassification,
            "text-generation": BertLMHeadModel,
            "token-classification": BertForTokenClassification,
            "zero-shot": BertForSequenceClassification,
        }
        if is_torch_available()
        else {}
    )
460
    fx_compatible = True
thomwolf's avatar
thomwolf committed
461

462
463
464
465
466
    # special case for ForPreTraining model
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
        inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)

        if return_labels:
467
            if model_class in get_values(MODEL_FOR_PRETRAINING_MAPPING):
468
469
470
471
472
473
474
475
                inputs_dict["labels"] = torch.zeros(
                    (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device
                )
                inputs_dict["next_sentence_label"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
        return inputs_dict

thomwolf's avatar
thomwolf committed
476
    def setUp(self):
477
        self.model_tester = BertModelTester(self)
thomwolf's avatar
thomwolf committed
478
        self.config_tester = ConfigTester(self, config_class=BertConfig, hidden_size=37)
thomwolf's avatar
thomwolf committed
479
480

    def test_config(self):
thomwolf's avatar
thomwolf committed
481
        self.config_tester.run_common_tests()
thomwolf's avatar
thomwolf committed
482

483
    def test_model(self):
thomwolf's avatar
thomwolf committed
484
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
485
        self.model_tester.create_and_check_model(*config_and_inputs)
thomwolf's avatar
thomwolf committed
486

487
488
489
490
491
492
    def test_model_various_embeddings(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        for type in ["absolute", "relative_key", "relative_key_query"]:
            config_and_inputs[0].position_embedding_type = type
            self.model_tester.create_and_check_model(*config_and_inputs)

493
    def test_model_as_decoder(self):
494
        config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
495
        self.model_tester.create_and_check_model_as_decoder(*config_and_inputs)
496

497
    def test_model_as_decoder_with_default_input_mask(self):
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
        # This regression test was failing with PyTorch < 1.3
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
            encoder_hidden_states,
            encoder_attention_mask,
        ) = self.model_tester.prepare_config_and_inputs_for_decoder()

        input_mask = None

513
        self.model_tester.create_and_check_model_as_decoder(
514
515
516
517
518
519
520
521
522
523
524
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
            encoder_hidden_states,
            encoder_attention_mask,
        )

525
526
    def test_for_causal_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
527
        self.model_tester.create_and_check_for_causal_lm(*config_and_inputs)
528

thomwolf's avatar
thomwolf committed
529
530
    def test_for_masked_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
531
        self.model_tester.create_and_check_for_masked_lm(*config_and_inputs)
thomwolf's avatar
thomwolf committed
532

533
    def test_for_causal_lm_decoder(self):
534
        config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
535
        self.model_tester.create_and_check_model_for_causal_lm_as_decoder(*config_and_inputs)
536

537
538
539
540
    def test_decoder_model_past_with_large_inputs(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
        self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs)

541
542
543
544
545
    def test_decoder_model_past_with_large_inputs_relative_pos_emb(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
        config_and_inputs[0].position_embedding_type = "relative_key"
        self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs)

thomwolf's avatar
thomwolf committed
546
547
    def test_for_multiple_choice(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
548
        self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs)
thomwolf's avatar
thomwolf committed
549

thomwolf's avatar
thomwolf committed
550
551
    def test_for_next_sequence_prediction(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
552
        self.model_tester.create_and_check_for_next_sequence_prediction(*config_and_inputs)
thomwolf's avatar
thomwolf committed
553

thomwolf's avatar
thomwolf committed
554
555
    def test_for_pretraining(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
556
        self.model_tester.create_and_check_for_pretraining(*config_and_inputs)
thomwolf's avatar
thomwolf committed
557

thomwolf's avatar
thomwolf committed
558
559
    def test_for_question_answering(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
560
        self.model_tester.create_and_check_for_question_answering(*config_and_inputs)
thomwolf's avatar
thomwolf committed
561

thomwolf's avatar
thomwolf committed
562
563
    def test_for_sequence_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
564
        self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs)
thomwolf's avatar
thomwolf committed
565

thomwolf's avatar
thomwolf committed
566
567
    def test_for_token_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
568
        self.model_tester.create_and_check_for_token_classification(*config_and_inputs)
thomwolf's avatar
thomwolf committed
569

570
    @slow
thomwolf's avatar
thomwolf committed
571
    def test_model_from_pretrained(self):
572
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
573
            model = BertModel.from_pretrained(model_name)
thomwolf's avatar
thomwolf committed
574
            self.assertIsNotNone(model)
575

Lysandre Debut's avatar
Lysandre Debut committed
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
    @slow
    @require_torch_gpu
    def test_torchscript_device_change(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            # BertForMultipleChoice behaves incorrectly in JIT environments.
            if model_class == BertForMultipleChoice:
                return

            config.torchscript = True
            model = model_class(config=config)

            inputs_dict = self._prepare_for_class(inputs_dict, model_class)
            traced_model = torch.jit.trace(
                model, (inputs_dict["input_ids"].to("cpu"), inputs_dict["attention_mask"].to("cpu"))
            )

            with tempfile.TemporaryDirectory() as tmp:
                torch.jit.save(traced_model, os.path.join(tmp, "bert.pt"))
                loaded = torch.jit.load(os.path.join(tmp, "bert.pt"), map_location=torch_device)
                loaded(inputs_dict["input_ids"].to(torch_device), inputs_dict["attention_mask"].to(torch_device))

598
599
600
601
602
603
604

@require_torch
class BertModelIntegrationTest(unittest.TestCase):
    @slow
    def test_inference_no_head_absolute_embedding(self):
        model = BertModel.from_pretrained("bert-base-uncased")
        input_ids = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]])
605
        attention_mask = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]])
606
607
        with torch.no_grad():
            output = model(input_ids, attention_mask=attention_mask)[0]
608
609
        expected_shape = torch.Size((1, 11, 768))
        self.assertEqual(output.shape, expected_shape)
610
        expected_slice = torch.tensor([[[0.4249, 0.1008, 0.7531], [0.3771, 0.1188, 0.7467], [0.4152, 0.1098, 0.7108]]])
611

612
        self.assertTrue(torch.allclose(output[:, 1:4, 1:4], expected_slice, atol=1e-4))
613
614
615
616
617

    @slow
    def test_inference_no_head_relative_embedding_key(self):
        model = BertModel.from_pretrained("zhiheng-huang/bert-base-uncased-embedding-relative-key")
        input_ids = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]])
618
        attention_mask = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]])
619
620
        with torch.no_grad():
            output = model(input_ids, attention_mask=attention_mask)[0]
621
622
623
        expected_shape = torch.Size((1, 11, 768))
        self.assertEqual(output.shape, expected_shape)
        expected_slice = torch.tensor(
624
            [[[0.0756, 0.3142, -0.5128], [0.3761, 0.3462, -0.5477], [0.2052, 0.3760, -0.1240]]]
625
626
        )

627
        self.assertTrue(torch.allclose(output[:, 1:4, 1:4], expected_slice, atol=1e-4))
628
629
630
631
632

    @slow
    def test_inference_no_head_relative_embedding_key_query(self):
        model = BertModel.from_pretrained("zhiheng-huang/bert-base-uncased-embedding-relative-key-query")
        input_ids = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]])
633
        attention_mask = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]])
634
635
        with torch.no_grad():
            output = model(input_ids, attention_mask=attention_mask)[0]
636
637
        expected_shape = torch.Size((1, 11, 768))
        self.assertEqual(output.shape, expected_shape)
638
639
640
        expected_slice = torch.tensor(
            [[[0.6496, 0.3784, 0.8203], [0.8148, 0.5656, 0.2636], [-0.0681, 0.5597, 0.7045]]]
        )
641

642
        self.assertTrue(torch.allclose(output[:, 1:4, 1:4], expected_slice, atol=1e-4))