test_modeling_tf_albert.py 14 KB
Newer Older
Lysandre's avatar
Lysandre committed
1
# coding=utf-8
Sylvain Gugger's avatar
Sylvain Gugger committed
2
# Copyright 2020 The HuggingFace Team. All rights reserved.
Lysandre's avatar
Lysandre committed
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

Lysandre's avatar
Lysandre committed
16

17
18
import unittest

Aymeric Augustin's avatar
Aymeric Augustin committed
19
from transformers import AlbertConfig, is_tf_available
20
from transformers.models.auto import get_values
21
from transformers.testing_utils import require_tf, slow
Lysandre's avatar
Lysandre committed
22

Yih-Dar's avatar
Yih-Dar committed
23
24
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
25
from ...test_pipeline_mixin import PipelineTesterMixin
Lysandre's avatar
Lysandre committed
26
27
28


if is_tf_available():
29
    import tensorflow as tf
30

Julien Plu's avatar
Julien Plu committed
31
    from transformers import TF_MODEL_FOR_PRETRAINING_MAPPING
Sylvain Gugger's avatar
Sylvain Gugger committed
32
    from transformers.models.albert.modeling_tf_albert import (
33
        TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
34
        TFAlbertForMaskedLM,
35
        TFAlbertForMultipleChoice,
36
        TFAlbertForPreTraining,
37
        TFAlbertForQuestionAnswering,
38
        TFAlbertForSequenceClassification,
Lysandre Debut's avatar
Lysandre Debut committed
39
        TFAlbertForTokenClassification,
40
        TFAlbertModel,
41
    )
Lysandre's avatar
Lysandre committed
42
43


44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
class TFAlbertModelTester:
    def __init__(
        self,
        parent,
        batch_size=13,
        seq_length=7,
        is_training=True,
        use_input_mask=True,
        use_token_type_ids=True,
        use_labels=True,
        vocab_size=99,
        embedding_size=16,
        hidden_size=32,
        num_hidden_layers=5,
        num_attention_heads=4,
        intermediate_size=37,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=512,
        type_vocab_size=16,
        type_sequence_label_size=2,
        initializer_range=0.02,
        num_labels=3,
        num_choices=4,
        scope=None,
    ):
        self.parent = parent
        self.batch_size = 13
        self.seq_length = 7
        self.is_training = True
        self.use_input_mask = True
        self.use_token_type_ids = True
        self.use_labels = True
        self.vocab_size = 99
        self.embedding_size = 16
        self.hidden_size = 32
        self.num_hidden_layers = 5
        self.num_attention_heads = 4
        self.intermediate_size = 37
        self.hidden_act = "gelu"
        self.hidden_dropout_prob = 0.1
        self.attention_probs_dropout_prob = 0.1
        self.max_position_embeddings = 512
        self.type_vocab_size = 16
        self.type_sequence_label_size = 2
        self.initializer_range = 0.02
        self.num_labels = 3
        self.num_choices = 4
        self.scope = None

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
100
            input_mask = random_attention_mask([self.batch_size, self.seq_length])
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

        config = AlbertConfig(
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
Lysandre Debut's avatar
Lysandre Debut committed
117
            embedding_size=self.embedding_size,
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            type_vocab_size=self.type_vocab_size,
            initializer_range=self.initializer_range,
        )

        return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels

    def create_and_check_albert_model(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = TFAlbertModel(config=config)
        # inputs = {'input_ids': input_ids,
        #           'attention_mask': input_mask,
        #           'token_type_ids': token_type_ids}
        # sequence_output, pooled_output = model(**inputs)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
140
        result = model(inputs)
141
142

        inputs = [input_ids, input_mask]
Sylvain Gugger's avatar
Sylvain Gugger committed
143
        result = model(inputs)
144

Sylvain Gugger's avatar
Sylvain Gugger committed
145
        result = model(input_ids)
146

147
148
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
        self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
149
150
151
152
153
154
155

    def create_and_check_albert_for_pretraining(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_labels = self.num_labels
        model = TFAlbertForPreTraining(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
156
        result = model(inputs)
157
158
        self.parent.assertEqual(result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
        self.parent.assertEqual(result.sop_logits.shape, (self.batch_size, self.num_labels))
159
160
161
162
163
164

    def create_and_check_albert_for_masked_lm(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = TFAlbertForMaskedLM(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
165
        result = model(inputs)
166
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
167
168
169
170
171
172
173

    def create_and_check_albert_for_sequence_classification(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_labels = self.num_labels
        model = TFAlbertForSequenceClassification(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
174
        result = model(inputs)
175
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
176
177
178
179
180
181

    def create_and_check_albert_for_question_answering(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = TFAlbertForQuestionAnswering(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
182
        result = model(inputs)
183
184
        self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
        self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
185

186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
    def create_and_check_albert_for_multiple_choice(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_choices = self.num_choices
        model = TFAlbertForMultipleChoice(config=config)
        multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1))
        multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1))
        multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1))
        inputs = {
            "input_ids": multiple_choice_inputs_ids,
            "attention_mask": multiple_choice_input_mask,
            "token_type_ids": multiple_choice_token_type_ids,
        }
        result = model(inputs)
        self.parent.assertListEqual(list(result["logits"].shape), [self.batch_size, self.num_choices])

Lysandre Debut's avatar
Lysandre Debut committed
202
203
204
205
206
207
208
209
210
211
212
213
214
    def create_and_check_albert_for_token_classification(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_labels = self.num_labels
        model = TFAlbertForTokenClassification(config=config)
        inputs = {
            "input_ids": input_ids,
            "attention_mask": input_mask,
            "token_type_ids": token_type_ids,
        }
        result = model(inputs)
        self.parent.assertListEqual(list(result["logits"].shape), [self.batch_size, self.seq_length, self.num_labels])

215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs
        inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
        return config, inputs_dict


230
@require_tf
231
class TFAlbertModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
Lysandre's avatar
Lysandre committed
232
    all_model_classes = (
233
234
235
236
237
238
        (
            TFAlbertModel,
            TFAlbertForPreTraining,
            TFAlbertForMaskedLM,
            TFAlbertForSequenceClassification,
            TFAlbertForQuestionAnswering,
Lysandre Debut's avatar
Lysandre Debut committed
239
240
            TFAlbertForTokenClassification,
            TFAlbertForMultipleChoice,
241
        )
242
243
        if is_tf_available()
        else ()
244
    )
245
246
247
248
249
250
251
252
253
254
255
256
    pipeline_model_mapping = (
        {
            "feature-extraction": TFAlbertModel,
            "fill-mask": TFAlbertForMaskedLM,
            "question-answering": TFAlbertForQuestionAnswering,
            "text-classification": TFAlbertForSequenceClassification,
            "token-classification": TFAlbertForTokenClassification,
            "zero-shot": TFAlbertForSequenceClassification,
        }
        if is_tf_available()
        else {}
    )
257
    test_head_masking = False
258
    test_onnx = False
Lysandre's avatar
Lysandre committed
259

Julien Plu's avatar
Julien Plu committed
260
261
262
263
264
    # special case for ForPreTraining model
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
        inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)

        if return_labels:
265
            if model_class in get_values(TF_MODEL_FOR_PRETRAINING_MAPPING):
Julien Plu's avatar
Julien Plu committed
266
267
268
269
                inputs_dict["sentence_order_label"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32)

        return inputs_dict

Lysandre's avatar
Lysandre committed
270
    def setUp(self):
271
        self.model_tester = TFAlbertModelTester(self)
272
        self.config_tester = ConfigTester(self, config_class=AlbertConfig, hidden_size=37)
Lysandre's avatar
Lysandre committed
273
274
275
276
277
278
279
280

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_albert_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_albert_model(*config_and_inputs)

281
282
283
284
    def test_for_pretraining(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_albert_for_pretraining(*config_and_inputs)

Lysandre's avatar
Lysandre committed
285
286
    def test_for_masked_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
287
        self.model_tester.create_and_check_albert_for_masked_lm(*config_and_inputs)
Lysandre's avatar
Lysandre committed
288

289
290
291
292
    def test_for_multiple_choice(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_albert_for_multiple_choice(*config_and_inputs)

Lysandre's avatar
Lysandre committed
293
294
    def test_for_sequence_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
295
        self.model_tester.create_and_check_albert_for_sequence_classification(*config_and_inputs)
Lysandre's avatar
Lysandre committed
296

297
298
299
300
    def test_for_question_answering(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_albert_for_question_answering(*config_and_inputs)

301
302
    def test_model_common_attributes(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
303
        list_lm_models = [TFAlbertForPreTraining, TFAlbertForMaskedLM]
304
305
306
307

        for model_class in self.all_model_classes:
            model = model_class(config)
            assert isinstance(model.get_input_embeddings(), tf.keras.layers.Layer)
308
309
310
311
312
313
314
315
316
317
318
319
320

            if model_class in list_lm_models:
                x = model.get_output_embeddings()
                assert isinstance(x, tf.keras.layers.Layer)
                name = model.get_bias()
                assert isinstance(name, dict)
                for k, v in name.items():
                    assert isinstance(v, tf.Variable)
            else:
                x = model.get_output_embeddings()
                assert x is None
                name = model.get_bias()
                assert name is None
321

322
    @slow
Lysandre's avatar
Lysandre committed
323
    def test_model_from_pretrained(self):
324
        for model_name in TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
325
            model = TFAlbertModel.from_pretrained(model_name)
Lysandre's avatar
Lysandre committed
326
            self.assertIsNotNone(model)
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349


@require_tf
class TFAlbertModelIntegrationTest(unittest.TestCase):
    @slow
    def test_inference_masked_lm(self):
        model = TFAlbertForPreTraining.from_pretrained("albert-base-v2")
        input_ids = tf.constant([[0, 1, 2, 3, 4, 5]])
        output = model(input_ids)[0]

        expected_shape = [1, 6, 30000]
        self.assertEqual(output.shape, expected_shape)

        expected_slice = tf.constant(
            [
                [
                    [4.595668, 0.74462754, -1.818147],
                    [4.5954347, 0.7454184, -1.8188258],
                    [4.5954905, 0.7448235, -1.8182316],
                ]
            ]
        )
        tf.debugging.assert_near(output[:, :3, :3], expected_slice, atol=1e-4)