test_generation_utils.py 80.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright 2020 The HuggingFace Team Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a clone of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


17
import inspect
18
19
20
import unittest

from transformers import is_torch_available
21
from transformers.testing_utils import require_torch, slow, torch_device
22

23
from .test_modeling_common import floats_tensor, ids_tensor
24

25
26
27
28

if is_torch_available():
    import torch

29
30
31
32
33
    from transformers import (
        BartForConditionalGeneration,
        BartTokenizer,
        GPT2LMHeadModel,
        GPT2Tokenizer,
34
        ImageGPTForCausalImageModeling,
35
36
37
        Speech2TextForConditionalGeneration,
        SpeechEncoderDecoderModel,
        VisionEncoderDecoderModel,
38
39
        top_k_top_p_filtering,
    )
40
41
    from transformers.generation_beam_search import BeamSearchScorer
    from transformers.generation_logits_process import (
42
43
        ForcedBOSTokenLogitsProcessor,
        ForcedEOSTokenLogitsProcessor,
44
        HammingDiversityLogitsProcessor,
45
        InfNanRemoveLogitsProcessor,
46
47
48
49
50
51
52
53
54
        LogitsProcessorList,
        MinLengthLogitsProcessor,
        NoBadWordsLogitsProcessor,
        NoRepeatNGramLogitsProcessor,
        RepetitionPenaltyLogitsProcessor,
        TemperatureLogitsWarper,
        TopKLogitsWarper,
        TopPLogitsWarper,
    )
55
    from transformers.generation_stopping_criteria import MaxLengthCriteria, StoppingCriteria, StoppingCriteriaList
56
    from transformers.generation_utils import (
57
58
        BeamSampleDecoderOnlyOutput,
        BeamSampleEncoderDecoderOutput,
59
60
61
62
63
64
65
        BeamSearchDecoderOnlyOutput,
        BeamSearchEncoderDecoderOutput,
        GreedySearchDecoderOnlyOutput,
        GreedySearchEncoderDecoderOutput,
        SampleDecoderOnlyOutput,
        SampleEncoderDecoderOutput,
    )
66
67
68
69
70


class GenerationTesterMixin:
    model_tester = None
    all_generative_model_classes = ()
Suraj Patil's avatar
Suraj Patil committed
71
    input_name = "input_ids"
72
73
74
75

    def _get_input_ids_and_config(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

Suraj Patil's avatar
Suraj Patil committed
76
77
        input_ids = inputs_dict[self.input_name]
        attention_mask = torch.ones_like(input_ids, dtype=torch.long)
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

        # cut to half length & take max batch_size 3
        max_batch_size = 2
        sequence_length = input_ids.shape[-1] // 2
        input_ids = input_ids[:max_batch_size, :sequence_length]
        attention_mask = attention_mask[:max_batch_size, :sequence_length]

        # generate max 3 tokens
        max_length = input_ids.shape[-1] + 3
        if config.eos_token_id is not None and config.pad_token_id is None:
            # hack to allow generate for models such as GPT2 as is done in `generate()`
            config.pad_token_id = config.eos_token_id
        return config, input_ids, attention_mask, max_length

    @staticmethod
93
94
95
96
97
98
99
100
    def _get_logits_processor_and_kwargs(
        input_length,
        eos_token_id,
        forced_bos_token_id=None,
        forced_eos_token_id=None,
        max_length=None,
        diversity_penalty=None,
    ):
101
102
103
104
105
106
107
108
        process_kwargs = {
            "min_length": input_length + 1,
            "bad_words_ids": [[1, 0]],
            "no_repeat_ngram_size": 2,
            "repetition_penalty": 1.2,
        }
        logits_processor = LogitsProcessorList(
            (
109
110
111
112
113
114
115
                [
                    HammingDiversityLogitsProcessor(diversity_penalty, num_beams=2, num_beam_groups=2),
                ]
                if diversity_penalty is not None
                else []
            )
            + (
116
117
118
119
120
121
                [
                    MinLengthLogitsProcessor(process_kwargs["min_length"], eos_token_id),
                ]
                if eos_token_id is not None
                else []
            )
122
123
124
125
126
127
128
129
130
131
132
133
            + (
                [
                    ForcedBOSTokenLogitsProcessor(forced_bos_token_id),
                ]
                if forced_bos_token_id is not None
                else []
            )
            + (
                [ForcedEOSTokenLogitsProcessor(max_length, forced_eos_token_id)]
                if forced_eos_token_id is not None
                else []
            )
134
135
136
137
138
139
140
141
142
143
144
145
146
            + [
                NoBadWordsLogitsProcessor(process_kwargs["bad_words_ids"], eos_token_id),
                NoRepeatNGramLogitsProcessor(process_kwargs["no_repeat_ngram_size"]),
                RepetitionPenaltyLogitsProcessor(process_kwargs["repetition_penalty"]),
            ]
        )
        return process_kwargs, logits_processor

    @staticmethod
    def _get_warper_and_kwargs(num_beams):
        warp_kwargs = {"top_k": 10, "top_p": 0.7, "temperature": 0.7}
        logits_warper = LogitsProcessorList(
            [
Patrick von Platen's avatar
Patrick von Platen committed
147
                TemperatureLogitsWarper(warp_kwargs["temperature"]),
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
                TopKLogitsWarper(top_k=warp_kwargs["top_k"], min_tokens_to_keep=(2 if num_beams > 1 else 1)),
                TopPLogitsWarper(top_p=warp_kwargs["top_p"], min_tokens_to_keep=(2 if num_beams > 1 else 1)),
            ]
        )
        return warp_kwargs, logits_warper

    @staticmethod
    def _get_beam_scorer_and_kwargs(batch_size, max_length, num_return_sequences=1):
        beam_kwargs = {
            "early_stopping": False,
            "length_penalty": 2.0,
            "num_beams": 2,
            "num_return_sequences": num_return_sequences,
        }
        beam_scorer = BeamSearchScorer(
            batch_size=batch_size,
            num_beams=beam_kwargs["num_beams"],
            device=torch_device,
            length_penalty=beam_kwargs["length_penalty"],
            do_early_stopping=beam_kwargs["early_stopping"],
            num_beam_hyps_to_keep=num_return_sequences,
        )
        return beam_kwargs, beam_scorer

172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
    @staticmethod
    def _get_diverse_beam_scorer_and_kwargs(batch_size, max_length, num_return_sequences=1):
        beam_kwargs = {
            "early_stopping": False,
            "length_penalty": 2.0,
            "num_beams": 2,
            "num_return_sequences": num_return_sequences,
            "num_beam_groups": 2,  # one beam per group
            "diversity_penalty": 2.0,
        }
        beam_scorer = BeamSearchScorer(
            batch_size=batch_size,
            num_beams=beam_kwargs["num_beams"],
            device=torch_device,
            length_penalty=beam_kwargs["length_penalty"],
            do_early_stopping=beam_kwargs["early_stopping"],
            num_beam_hyps_to_keep=num_return_sequences,
            num_beam_groups=beam_kwargs["num_beam_groups"],
        )
        return beam_kwargs, beam_scorer

193
    @staticmethod
194
195
196
    def _get_encoder_outputs(
        model, input_ids, attention_mask, output_attentions=None, output_hidden_states=None, num_interleave=1
    ):
197
        encoder = model.get_encoder()
198
199
200
201
202
203
        encoder_outputs = encoder(
            input_ids,
            attention_mask=attention_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
        )
204
205
206
207
208
209
210
        encoder_outputs["last_hidden_state"] = encoder_outputs.last_hidden_state.repeat_interleave(
            num_interleave, dim=0
        )
        input_ids = torch.zeros_like(input_ids[:, :1]) + model._get_decoder_start_token_id()
        attention_mask = None
        return encoder_outputs, input_ids, attention_mask

211
212
213
214
215
216
217
218
219
220
221
    def _greedy_generate(
        self,
        model,
        input_ids,
        attention_mask,
        max_length,
        output_scores=False,
        output_attentions=False,
        output_hidden_states=False,
        return_dict_in_generate=False,
    ):
222
223
        if model.config.is_encoder_decoder:
            max_length = 4
224
        logits_process_kwargs, logits_processor = self._get_logits_processor_and_kwargs(
225
226
227
228
229
            input_ids.shape[-1],
            eos_token_id=model.config.eos_token_id,
            forced_bos_token_id=model.config.forced_bos_token_id,
            forced_eos_token_id=model.config.forced_eos_token_id,
            max_length=max_length,
230
231
232
233
234
235
236
237
238
239
240
241
242
243
        )

        kwargs = {}

        output_generate = model.generate(
            input_ids,
            attention_mask=attention_mask,
            do_sample=False,
            num_beams=1,
            max_length=max_length,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            output_scores=output_scores,
            return_dict_in_generate=return_dict_in_generate,
244
            remove_invalid_values=True,
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
            **logits_process_kwargs,
        )

        if model.config.is_encoder_decoder:
            encoder_outputs, input_ids, attention_mask = self._get_encoder_outputs(
                model,
                input_ids,
                attention_mask,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
            )
            kwargs["encoder_outputs"] = encoder_outputs

        with torch.no_grad():
            output_greedy = model.greedy_search(
                input_ids,
                max_length=max_length,
                attention_mask=attention_mask,
                logits_processor=logits_processor,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                output_scores=output_scores,
                return_dict_in_generate=return_dict_in_generate,
                **kwargs,
            )
        return output_greedy, output_generate

    def _sample_generate(
        self,
        model,
        input_ids,
        attention_mask,
        max_length,
        num_return_sequences,
        logits_processor,
        logits_warper,
        logits_warper_kwargs,
        process_kwargs,
        output_scores=False,
        output_attentions=False,
        output_hidden_states=False,
        return_dict_in_generate=False,
    ):
        torch.manual_seed(0)
        output_generate = model.generate(
            input_ids,
            do_sample=True,
            num_beams=1,
            max_length=max_length,
            num_return_sequences=num_return_sequences,
            attention_mask=attention_mask,
            output_scores=output_scores,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict_in_generate=return_dict_in_generate,
300
            remove_invalid_values=True,
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
            **logits_warper_kwargs,
            **process_kwargs,
        )

        torch.manual_seed(0)
        kwargs = {}
        if model.config.is_encoder_decoder:
            encoder_outputs, input_ids_clone, attention_mask_clone = self._get_encoder_outputs(
                model,
                input_ids,
                attention_mask,
                num_interleave=num_return_sequences,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
            )
            kwargs["encoder_outputs"] = encoder_outputs
            input_ids_clone = input_ids_clone.repeat_interleave(num_return_sequences, dim=0)
        else:
            attention_mask_clone = attention_mask.repeat_interleave(num_return_sequences, dim=0)
            input_ids_clone = input_ids.repeat_interleave(num_return_sequences, dim=0)

322
323
324
        # prevent flaky generation test failures
        logits_processor.append(InfNanRemoveLogitsProcessor())

325
        with torch.no_grad():
Vasudev Gupta's avatar
Vasudev Gupta committed
326
327
328
329
330
331
332
333
334
335
336
337
            output_sample = model.sample(
                input_ids_clone,
                attention_mask=attention_mask_clone,
                max_length=max_length,
                logits_processor=logits_processor,
                logits_warper=logits_warper,
                output_scores=output_scores,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict_in_generate=return_dict_in_generate,
                **kwargs,
            )
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
        return output_sample, output_generate

    def _beam_search_generate(
        self,
        model,
        input_ids,
        attention_mask,
        max_length,
        beam_scorer,
        beam_kwargs,
        logits_processor,
        logits_process_kwargs,
        output_scores=False,
        output_attentions=False,
        output_hidden_states=False,
        return_dict_in_generate=False,
    ):
        output_generate = model.generate(
            input_ids,
            attention_mask=attention_mask,
            do_sample=False,
            max_length=max_length,
            output_scores=output_scores,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict_in_generate=return_dict_in_generate,
364
            remove_invalid_values=True,
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
            **beam_kwargs,
            **logits_process_kwargs,
        )

        # beam_search does not automatically interleave `batch_size` dim for `num_beams`
        kwargs = {}
        if model.config.is_encoder_decoder:
            encoder_outputs, input_ids_clone, attention_mask_clone = self._get_encoder_outputs(
                model,
                input_ids,
                attention_mask,
                num_interleave=beam_scorer.num_beams,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
            )
            kwargs["encoder_outputs"] = encoder_outputs
            input_ids_clone = input_ids_clone.repeat_interleave(beam_scorer.num_beams, dim=0)
        else:
            attention_mask_clone = attention_mask.repeat_interleave(beam_scorer.num_beams, dim=0)
            input_ids_clone = input_ids.repeat_interleave(beam_scorer.num_beams, dim=0)

        with torch.no_grad():
            output_beam_search = model.beam_search(
                input_ids_clone,
                beam_scorer,
                max_length=max_length,
                attention_mask=attention_mask_clone,
                logits_processor=logits_processor,
                output_scores=output_scores,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict_in_generate=return_dict_in_generate,
                **kwargs,
            )
        return output_generate, output_beam_search

    def _beam_sample_generate(
        self,
        model,
        input_ids,
        attention_mask,
        max_length,
        num_return_sequences,
        beam_scorer,
        beam_kwargs,
        logits_warper,
        logits_warper_kwargs,
        output_scores=False,
        output_attentions=False,
        output_hidden_states=False,
        return_dict_in_generate=False,
    ):
        torch.manual_seed(0)
        output_generate = model.generate(
            input_ids,
            attention_mask=attention_mask,
            do_sample=True,
            max_length=max_length,
            output_scores=output_scores,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict_in_generate=return_dict_in_generate,
427
            remove_invalid_values=True,
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
            **beam_kwargs,
            **logits_warper_kwargs,
        )
        # beam_search does not automatically interleave `batch_size` dim for `num_beams * num_return_sequences`
        kwargs = {}
        if model.config.is_encoder_decoder:
            encoder_outputs, input_ids, attention_mask = self._get_encoder_outputs(
                model,
                input_ids,
                attention_mask,
                num_interleave=beam_scorer.num_beams * num_return_sequences,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
            )
            kwargs["encoder_outputs"] = encoder_outputs
        else:
            attention_mask = attention_mask.repeat_interleave(beam_scorer.num_beams * num_return_sequences, dim=0)

446
447
448
449
        # prevent flaky generation test failures
        logits_processor = LogitsProcessorList()
        logits_processor.append(InfNanRemoveLogitsProcessor())

450
451
452
453
454
455
456
457
        torch.manual_seed(0)
        with torch.no_grad():
            output_beam_sample = model.beam_sample(
                input_ids.repeat_interleave(beam_scorer.num_beams * num_return_sequences, dim=0),
                beam_scorer,
                max_length=max_length,
                attention_mask=attention_mask,
                logits_warper=logits_warper,
458
                logits_processor=logits_processor,
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
                output_scores=output_scores,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict_in_generate=return_dict_in_generate,
                **kwargs,
            )

        return output_generate, output_beam_sample

    def _group_beam_search_generate(
        self,
        model,
        input_ids,
        attention_mask,
        max_length,
        beam_scorer,
        beam_kwargs,
        logits_processor,
        logits_process_kwargs,
        output_scores=False,
        output_attentions=False,
        output_hidden_states=False,
        return_dict_in_generate=False,
    ):
        output_generate = model.generate(
            input_ids,
            attention_mask=attention_mask,
            do_sample=False,
            max_length=max_length,
            output_scores=output_scores,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict_in_generate=return_dict_in_generate,
492
            remove_invalid_values=True,
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
            **beam_kwargs,
            **logits_process_kwargs,
        )

        # group_beam_search does not automatically interleave `batch_size` dim for `num_beams`
        kwargs = {}
        if model.config.is_encoder_decoder:
            encoder_outputs, input_ids_clone, attention_mask_clone = self._get_encoder_outputs(
                model,
                input_ids,
                attention_mask,
                num_interleave=beam_scorer.num_beams,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
            )
            kwargs["encoder_outputs"] = encoder_outputs
            input_ids_clone = input_ids_clone.repeat_interleave(beam_scorer.num_beams, dim=0)
        else:
            attention_mask_clone = attention_mask.repeat_interleave(beam_scorer.num_beams, dim=0)
            input_ids_clone = input_ids.repeat_interleave(beam_scorer.num_beams, dim=0)

        with torch.no_grad():
            output_group_beam_search = model.group_beam_search(
                input_ids_clone,
                beam_scorer,
                max_length=max_length,
                attention_mask=attention_mask_clone,
                logits_processor=logits_processor,
                output_scores=output_scores,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict_in_generate=return_dict_in_generate,
                **kwargs,
            )
        return output_generate, output_group_beam_search

529
    def test_greedy_generate(self):
530
        # check `generate()` and `greedy_search()` are equal
531
532
        for model_class in self.all_generative_model_classes:
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
533
534
535
536
            # test old generation output for backwards compatibility
            model = model_class(config).to(torch_device).eval()
            output_greedy, output_generate = self._greedy_generate(
                model=model, input_ids=input_ids, attention_mask=attention_mask, max_length=max_length
537
            )
538
            self.assertListEqual(output_greedy.tolist(), output_generate.tolist())
539

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
    def test_greedy_generate_dict_outputs(self):
        for model_class in self.all_generative_model_classes:
            # disable cache
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
            config.use_cache = False
            model = model_class(config).to(torch_device).eval()
            output_greedy, output_generate = self._greedy_generate(
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                max_length=max_length,
                output_scores=True,
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
            )
556
557

            if model.config.is_encoder_decoder:
558
559
560
561
562
                self.assertIsInstance(output_greedy, GreedySearchEncoderDecoderOutput)
                self.assertIsInstance(output_generate, GreedySearchEncoderDecoderOutput)
            else:
                self.assertIsInstance(output_greedy, GreedySearchDecoderOnlyOutput)
                self.assertIsInstance(output_generate, GreedySearchDecoderOnlyOutput)
563

564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
            self.assertListEqual(output_generate.sequences.tolist(), output_greedy.sequences.tolist())

            for output in (output_greedy, output_generate):
                self._check_outputs(output, input_ids, model.config)

    def test_greedy_generate_dict_outputs_use_cache(self):
        for model_class in self.all_generative_model_classes:
            # enable cache
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()

            if not hasattr(config, "use_cache"):
                # only relevant if model has "use_cache"
                return

            config.use_cache = True
579
            config.is_decoder = True
580
581
582
583
            model = model_class(config).to(torch_device).eval()
            output_greedy, output_generate = self._greedy_generate(
                model=model,
                input_ids=input_ids,
584
585
                attention_mask=attention_mask,
                max_length=max_length,
586
587
588
589
                output_scores=True,
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
590
            )
591

592
593
594
595
            self.assertListEqual(output_generate.sequences.tolist(), output_greedy.sequences.tolist())

            for output in (output_greedy, output_generate):
                self._check_outputs(output, input_ids, model.config, use_cache=True)
596
597
598
599

    def test_sample_generate(self):
        for model_class in self.all_generative_model_classes:
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
600
            model = model_class(config).to(torch_device).eval()
601
602
603
604

            if model.config.is_encoder_decoder:
                max_length = 4

605
606
607
608
609
610
611
612
613
            process_kwargs, logits_processor = self._get_logits_processor_and_kwargs(
                input_ids.shape[-1],
                model.config.eos_token_id,
                forced_bos_token_id=model.config.forced_bos_token_id,
                forced_eos_token_id=model.config.forced_eos_token_id,
                max_length=max_length,
            )
            logits_warper_kwargs, logits_warper = self._get_warper_and_kwargs(num_beams=1)

614
615
616
617
618
            # check `generate()` and `sample()` are equal
            output_sample, output_generate = self._sample_generate(
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
619
                max_length=max_length,
620
621
622
623
624
625
626
627
628
629
630
631
                num_return_sequences=1,
                logits_processor=logits_processor,
                logits_warper=logits_warper,
                logits_warper_kwargs=logits_warper_kwargs,
                process_kwargs=process_kwargs,
            )
            self.assertListEqual(output_sample.tolist(), output_generate.tolist())

            # check `generate()` and `sample()` yield equal results for `num_return_sequences`
            output_sample, output_generate = self._sample_generate(
                model=model,
                input_ids=input_ids,
632
                attention_mask=attention_mask,
633
634
635
636
637
638
                max_length=max_length,
                num_return_sequences=3,
                logits_processor=logits_processor,
                logits_warper=logits_warper,
                logits_warper_kwargs=logits_warper_kwargs,
                process_kwargs=process_kwargs,
639
            )
640
            self.assertListEqual(output_sample.tolist(), output_generate.tolist())
641

642
643
644
645
646
647
    def test_sample_generate_dict_output(self):
        for model_class in self.all_generative_model_classes:
            # disable cache
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
            config.use_cache = False
            model = model_class(config).to(torch_device).eval()
648
649
650
            if model.config.is_encoder_decoder:
                max_length = 4

651
            process_kwargs, logits_processor = self._get_logits_processor_and_kwargs(
652
653
654
655
656
                input_ids.shape[-1],
                model.config.eos_token_id,
                forced_bos_token_id=model.config.forced_bos_token_id,
                forced_eos_token_id=model.config.forced_eos_token_id,
                max_length=max_length,
657
658
            )
            logits_warper_kwargs, logits_warper = self._get_warper_and_kwargs(num_beams=1)
659

660
661
662
            output_sample, output_generate = self._sample_generate(
                model=model,
                input_ids=input_ids,
663
                attention_mask=attention_mask,
664
665
666
667
668
669
670
671
672
673
                max_length=max_length,
                num_return_sequences=2,
                logits_processor=logits_processor,
                logits_warper=logits_warper,
                logits_warper_kwargs=logits_warper_kwargs,
                process_kwargs=process_kwargs,
                output_scores=True,
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
674
675
676
            )

            if model.config.is_encoder_decoder:
677
678
                self.assertIsInstance(output_sample, SampleEncoderDecoderOutput)
                self.assertIsInstance(output_generate, SampleEncoderDecoderOutput)
679
            else:
680
681
682
683
684
685
686
                self.assertIsInstance(output_sample, SampleDecoderOnlyOutput)
                self.assertIsInstance(output_generate, SampleDecoderOnlyOutput)

            self.assertListEqual(output_generate.sequences.tolist(), output_sample.sequences.tolist())

            for output in (output_sample, output_generate):
                self._check_outputs(output, input_ids, model.config, num_return_sequences=2)
687
688
689
690

    def test_beam_search_generate(self):
        for model_class in self.all_generative_model_classes:
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
691
692
693
694
695

            # It is important set set the eos_token_id to None to ensure that no sequences
            # shorter than `max_length` can be generated which could lead to flaky circle ci
            # failures if the top `num_return_sequences` beams are all shorter than the longest beam
            config.eos_token_id = None
696
            config.forced_eos_token_id = None
697

698
            model = model_class(config).to(torch_device).eval()
699
700
            if model.config.is_encoder_decoder:
                max_length = 4
701
702

            logits_process_kwargs, logits_processor = self._get_logits_processor_and_kwargs(
703
704
705
706
707
                input_ids.shape[-1],
                config.eos_token_id,
                config.forced_bos_token_id,
                config.forced_eos_token_id,
                max_length,
708
709
            )
            beam_kwargs, beam_scorer = self._get_beam_scorer_and_kwargs(input_ids.shape[0], max_length)
710
711
712
713
714

            # check `generate()` and `beam_search()` are equal
            output_generate, output_beam_search = self._beam_search_generate(
                model=model,
                input_ids=input_ids,
715
716
                attention_mask=attention_mask,
                max_length=max_length,
717
718
719
720
                beam_scorer=beam_scorer,
                beam_kwargs=beam_kwargs,
                logits_process_kwargs=logits_process_kwargs,
                logits_processor=logits_processor,
721
            )
722
            self.assertListEqual(output_generate.tolist(), output_beam_search.tolist())
723
724
725
726
727
728
729
730
731

            # check `generate()` and `beam_search()` are equal for `num_return_sequences`
            num_return_sequences = 2
            if model.config.is_encoder_decoder:
                max_length = 4
            beam_kwargs, beam_scorer = self._get_beam_scorer_and_kwargs(
                input_ids.shape[0], max_length, num_return_sequences=num_return_sequences
            )

732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
            output_generate, output_beam_search = self._beam_search_generate(
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                max_length=max_length,
                beam_scorer=beam_scorer,
                beam_kwargs=beam_kwargs,
                logits_process_kwargs=logits_process_kwargs,
                logits_processor=logits_processor,
            )
            self.assertListEqual(output_generate.tolist(), output_beam_search.tolist())

    def test_beam_search_generate_dict_output(self):
        for model_class in self.all_generative_model_classes:
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
747
748

            # disable cache
749
            config.use_cache = False
750
751
752
753
754

            # It is important set set the eos_token_id to None to ensure that no sequences
            # shorter than `max_length` can be generated which could lead to flaky circle ci
            # failures if the top `num_return_sequences` beams are all shorter than the longest beam
            config.eos_token_id = None
755
            config.forced_eos_token_id = None
756

757
758
759
            model = model_class(config).to(torch_device).eval()
            if model.config.is_encoder_decoder:
                max_length = 4
760
761
762
763
764
765
766
767

            logits_process_kwargs, logits_processor = self._get_logits_processor_and_kwargs(
                input_ids.shape[-1],
                config.eos_token_id,
                config.forced_bos_token_id,
                config.forced_eos_token_id,
                max_length,
            )
768
769
770
771
            beam_kwargs, beam_scorer = self._get_beam_scorer_and_kwargs(input_ids.shape[0], max_length)
            output_generate, output_beam_search = self._beam_search_generate(
                model=model,
                input_ids=input_ids,
772
773
                attention_mask=attention_mask,
                max_length=max_length,
774
775
776
777
778
779
780
781
                beam_scorer=beam_scorer,
                beam_kwargs=beam_kwargs,
                logits_process_kwargs=logits_process_kwargs,
                logits_processor=logits_processor,
                output_scores=True,
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
782
783
            )
            if model.config.is_encoder_decoder:
784
785
                self.assertIsInstance(output_beam_search, BeamSearchEncoderDecoderOutput)
                self.assertIsInstance(output_generate, BeamSearchEncoderDecoderOutput)
786
            else:
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
                self.assertIsInstance(output_beam_search, BeamSearchDecoderOnlyOutput)
                self.assertIsInstance(output_generate, BeamSearchDecoderOnlyOutput)

            self.assertListEqual(output_generate.sequences.tolist(), output_beam_search.sequences.tolist())
            self.assertTrue(
                torch.allclose(output_generate["sequences_scores"], output_beam_search["sequences_scores"], atol=1e-3)
            )
            self.assertTrue(output_generate["sequences_scores"].shape == (output_generate["sequences"].shape[0],))
            self.assertTrue((output_generate["sequences_scores"] < 0).all().item())

            for output in (output_beam_search, output_generate):
                self._check_outputs(output, input_ids, model.config, num_return_sequences=beam_scorer.num_beams)

    def test_beam_search_generate_dict_outputs_use_cache(self):
        for model_class in self.all_generative_model_classes:
            # enable cache
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()

805
806
807
808
            # It is important set set the eos_token_id to None to ensure that no sequences
            # shorter than `max_length` can be generated which could lead to flaky circle ci
            # failures if the top `num_return_sequences` beams are all shorter than the longest beam
            config.eos_token_id = None
809
            config.forced_eos_token_id = None
810

811
812
813
814
815
            if not hasattr(config, "use_cache"):
                # only relevant if model has "use_cache"
                return

            model = model_class(config).to(torch_device).eval()
816
817
            if model.config.is_encoder_decoder:
                max_length = 4
818
819

            logits_process_kwargs, logits_processor = self._get_logits_processor_and_kwargs(
820
821
822
823
824
                input_ids.shape[-1],
                config.eos_token_id,
                config.forced_bos_token_id,
                config.forced_eos_token_id,
                max_length,
825
826
827
828
829
            )

            beam_kwargs, beam_scorer = self._get_beam_scorer_and_kwargs(input_ids.shape[0], max_length)

            config.use_cache = True
830
            config.is_decoder = True
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
            model = model_class(config).to(torch_device).eval()
            output_beam, output_generate = self._beam_search_generate(
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                max_length=max_length,
                beam_scorer=beam_scorer,
                beam_kwargs=beam_kwargs,
                logits_process_kwargs=logits_process_kwargs,
                logits_processor=logits_processor,
                output_scores=True,
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
            )

            self.assertListEqual(output_generate.sequences.tolist(), output_beam.sequences.tolist())

            for output in (output_beam, output_generate):
                self._check_outputs(
                    output, input_ids, model.config, use_cache=True, num_return_sequences=beam_scorer.num_beams
852
853
854
855
856
                )

    def test_beam_sample_generate(self):
        for model_class in self.all_generative_model_classes:
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
857
858
859
860
861

            # It is important set set the eos_token_id to None to ensure that no sequences
            # shorter than `max_length` can be generated which could lead to flaky circle ci
            # failures if the top `num_return_sequences` beams are all shorter than the longest beam
            config.eos_token_id = None
862
            config.forced_eos_token_id = None
863

864
865
            logits_warper_kwargs, logits_warper = self._get_warper_and_kwargs(num_beams=1)

866
            model = model_class(config).to(torch_device).eval()
867
868
869
870
871
872
873
874
875
876

            # check `generate()` and `beam_search()` are equal
            # change `num_return_sequences = 2` but not for `beam_scorer`
            num_return_sequences = 2
            if model.config.is_encoder_decoder:
                max_length = 4
            beam_kwargs, beam_scorer = self._get_beam_scorer_and_kwargs(
                input_ids.shape[0] * num_return_sequences, max_length
            )
            beam_kwargs["num_return_sequences"] = num_return_sequences
877
878
879
880

            output_generate, output_beam_sample = self._beam_sample_generate(
                model=model,
                input_ids=input_ids,
881
882
                attention_mask=attention_mask,
                max_length=max_length,
883
884
885
886
887
                num_return_sequences=num_return_sequences,
                beam_scorer=beam_scorer,
                beam_kwargs=beam_kwargs,
                logits_warper=logits_warper,
                logits_warper_kwargs=logits_warper_kwargs,
888
            )
889
890
891
892
893
            self.assertListEqual(output_generate.tolist(), output_beam_sample.tolist())

    def test_beam_sample_generate_dict_output(self):
        for model_class in self.all_generative_model_classes:
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
894
895

            # disable cache
896
            config.use_cache = False
897
898
899
900
901

            # It is important set set the eos_token_id to None to ensure that no sequences
            # shorter than `max_length` can be generated which could lead to flaky circle ci
            # failures if the top `num_return_sequences` beams are all shorter than the longest beam
            config.eos_token_id = None
902
            config.forced_eos_token_id = None
903

904
905
906
907
            model = model_class(config).to(torch_device).eval()
            logits_warper_kwargs, logits_warper = self._get_warper_and_kwargs(num_beams=1)

            num_return_sequences = 2
908
            if model.config.is_encoder_decoder:
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
                max_length = 4
            beam_kwargs, beam_scorer = self._get_beam_scorer_and_kwargs(
                input_ids.shape[0] * num_return_sequences, max_length
            )
            beam_kwargs["num_return_sequences"] = num_return_sequences

            output_beam_sample, output_generate = self._beam_sample_generate(
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                max_length=max_length,
                num_return_sequences=num_return_sequences,
                beam_scorer=beam_scorer,
                beam_kwargs=beam_kwargs,
                logits_warper=logits_warper,
                logits_warper_kwargs=logits_warper_kwargs,
                output_scores=True,
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
            )

            if model.config.is_encoder_decoder:
932
933
                self.assertIsInstance(output_beam_sample, BeamSampleEncoderDecoderOutput)
                self.assertIsInstance(output_generate, BeamSampleEncoderDecoderOutput)
934
            else:
935
936
                self.assertIsInstance(output_beam_sample, BeamSampleDecoderOnlyOutput)
                self.assertIsInstance(output_generate, BeamSampleDecoderOnlyOutput)
937
938
939
940
941
942
943
944
945
946
947

            self.assertListEqual(output_generate.sequences.tolist(), output_beam_sample.sequences.tolist())
            self.assertTrue(
                torch.allclose(output_generate["sequences_scores"], output_beam_sample["sequences_scores"], atol=1e-3)
            )
            self.assertTrue(output_generate["sequences_scores"].shape == (output_generate["sequences"].shape[0],))
            self.assertTrue((output_generate["sequences_scores"] < 0).all().item())

            for output in (output_beam_sample, output_generate):
                self._check_outputs(
                    output, input_ids, model.config, num_return_sequences=num_return_sequences * beam_scorer.num_beams
948
949
                )

950
951
    def test_generate_without_input_ids(self):
        config, _, _, max_length = self._get_input_ids_and_config()
952

953
954
955
        # if no bos token id => cannot generate from None
        if config.bos_token_id is None:
            return
956

957
958
959
        for model_class in self.all_generative_model_classes:
            model = model_class(config).to(torch_device)
            model.eval()
960

961
962
963
            output_ids_generate = model.generate(
                do_sample=False,
                max_length=max_length,
964
                remove_invalid_values=True,
965
            )
966

967
            self.assertIsNotNone(output_ids_generate)
968

969
970
971
972
    def test_group_beam_search_generate(self):
        for model_class in self.all_generative_model_classes:
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()

973
974
975
976
            # It is important set set the eos_token_id to None to ensure that no sequences
            # shorter than `max_length` can be generated which could lead to flaky circle ci
            # failures if the top `num_return_sequences` beams are all shorter than the longest beam
            config.eos_token_id = None
977
978
979
980
981
            config.forced_eos_token_id = None

            model = model_class(config).to(torch_device).eval()
            if model.config.is_encoder_decoder:
                max_length = 4
982

983
            logits_process_kwargs, logits_processor = self._get_logits_processor_and_kwargs(
984
985
986
987
988
989
                input_ids.shape[-1],
                config.eos_token_id,
                config.forced_bos_token_id,
                config.forced_eos_token_id,
                max_length,
                diversity_penalty=2.0,
990
991
992
993
            )

            # check `generate()` and `group_beam_search()` are equal
            beam_kwargs, beam_scorer = self._get_diverse_beam_scorer_and_kwargs(input_ids.shape[0], max_length)
994
995
996
            output_generate, output_group_beam_search = self._group_beam_search_generate(
                model=model,
                input_ids=input_ids,
997
998
                attention_mask=attention_mask,
                max_length=max_length,
999
1000
1001
1002
                beam_scorer=beam_scorer,
                beam_kwargs=beam_kwargs,
                logits_processor=logits_processor,
                logits_process_kwargs=logits_process_kwargs,
1003
            )
1004
            self.assertListEqual(output_generate.tolist(), output_group_beam_search.tolist())
1005
1006
1007
1008
1009
1010
1011
1012

            # check `generate()` and `group_beam_search()` are equal for `num_return_sequences`
            num_return_sequences = 2
            if model.config.is_encoder_decoder:
                max_length = 4
            beam_kwargs, beam_scorer = self._get_diverse_beam_scorer_and_kwargs(
                input_ids.shape[0], max_length, num_return_sequences=num_return_sequences
            )
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
            output_generate, output_group_beam_search = self._group_beam_search_generate(
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                max_length=max_length,
                beam_scorer=beam_scorer,
                beam_kwargs=beam_kwargs,
                logits_processor=logits_processor,
                logits_process_kwargs=logits_process_kwargs,
            )
            self.assertListEqual(output_generate.tolist(), output_group_beam_search.tolist())
1024

1025
1026
1027
1028
    def test_group_beam_search_generate_dict_output(self):
        for model_class in self.all_generative_model_classes:
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
            config.use_cache = False
1029
1030
1031
1032
1033

            # It is important set set the eos_token_id to None to ensure that no sequences
            # shorter than `max_length` can be generated which could lead to flaky circle ci
            # failures if the top `num_return_sequences` beams are all shorter than the longest beam
            config.eos_token_id = None
1034
            config.forced_eos_token_id = None
1035

1036
            model = model_class(config).to(torch_device).eval()
1037
1038
            if model.config.is_encoder_decoder:
                max_length = 4
1039
1040

            logits_process_kwargs, logits_processor = self._get_logits_processor_and_kwargs(
1041
1042
1043
1044
1045
1046
                input_ids.shape[-1],
                config.eos_token_id,
                config.forced_bos_token_id,
                config.forced_eos_token_id,
                max_length,
                diversity_penalty=2.0,
1047
1048
1049
1050
1051
1052
1053
1054
1055
            )

            num_return_sequences = 1
            beam_kwargs, beam_scorer = self._get_diverse_beam_scorer_and_kwargs(
                input_ids.shape[0], max_length, num_return_sequences=num_return_sequences
            )
            output_generate, output_group_beam_search = self._group_beam_search_generate(
                model=model,
                input_ids=input_ids,
1056
1057
                attention_mask=attention_mask,
                max_length=max_length,
1058
1059
1060
1061
1062
1063
1064
1065
                beam_scorer=beam_scorer,
                beam_kwargs=beam_kwargs,
                logits_processor=logits_processor,
                logits_process_kwargs=logits_process_kwargs,
                output_scores=True,
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
1066
1067
            )
            if model.config.is_encoder_decoder:
1068
1069
                self.assertIsInstance(output_group_beam_search, BeamSearchEncoderDecoderOutput)
                self.assertIsInstance(output_generate, BeamSearchEncoderDecoderOutput)
1070
            else:
1071
1072
1073
1074
1075
1076
1077
                self.assertIsInstance(output_group_beam_search, BeamSearchDecoderOnlyOutput)
                self.assertIsInstance(output_generate, BeamSearchDecoderOnlyOutput)

            self.assertListEqual(output_generate.sequences.tolist(), output_group_beam_search.sequences.tolist())
            self.assertTrue(
                torch.allclose(
                    output_generate["sequences_scores"], output_group_beam_search["sequences_scores"], atol=1e-3
1078
                )
1079
1080
1081
1082
1083
1084
1085
1086
1087
            )
            self.assertTrue(output_generate["sequences_scores"].shape == (output_generate["sequences"].shape[0],))
            self.assertTrue((output_generate["sequences_scores"] < 0).all().item())

            for output in (output_group_beam_search, output_generate):
                self._check_outputs(
                    output, input_ids, model.config, num_return_sequences=num_return_sequences * beam_scorer.num_beams
                )

1088
1089
1090
1091
1092
    def test_generate_with_head_masking(self):
        """Test designed for encoder-decoder models to ensure the attention head masking is used."""
        attention_names = ["encoder_attentions", "decoder_attentions", "cross_attentions"]
        for model_class in self.all_generative_model_classes:
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
1093
            model = model_class(config).to(torch_device)
1094
1095
1096
1097
1098
            # We want to test only encoder-decoder models
            if not config.is_encoder_decoder:
                continue

            head_masking = {
1099
1100
1101
1102
1103
1104
1105
                "head_mask": torch.zeros(config.encoder_layers, config.encoder_attention_heads, device=torch_device),
                "decoder_head_mask": torch.zeros(
                    config.decoder_layers, config.decoder_attention_heads, device=torch_device
                ),
                "cross_attn_head_mask": torch.zeros(
                    config.decoder_layers, config.decoder_attention_heads, device=torch_device
                ),
1106
1107
1108
1109
            }

            signature = inspect.signature(model.forward)
            # We want to test only models where encoder/decoder head masking is implemented
1110
            if not set(head_masking.keys()) < set([*signature.parameters.keys()]):
1111
1112
1113
1114
1115
                continue

            for attn_name, (name, mask) in zip(attention_names, head_masking.items()):
                out = model.generate(
                    input_ids,
1116
                    attention_mask=attention_mask,
1117
1118
1119
                    num_beams=1,
                    output_attentions=True,
                    return_dict_in_generate=True,
1120
                    remove_invalid_values=True,
1121
1122
1123
1124
1125
1126
                    **{name: mask},
                )
                # We check the state of decoder_attentions and cross_attentions just from the last step
                attn_weights = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1]
                self.assertEqual(sum([w.sum().item() for w in attn_weights]), 0.0)

1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
    def _check_outputs(self, output, input_ids, config, use_cache=False, num_return_sequences=1):
        batch_size, seq_length = input_ids.shape
        num_sequences_in_output = batch_size * num_return_sequences
        gen_len = (
            output.sequences.shape[-1] - 1 if config.is_encoder_decoder else output.sequences.shape[-1] - seq_length
        )

        # scores
        self._check_scores(num_sequences_in_output, output.scores, length=gen_len, config=config)

        # Attentions
        if config.is_encoder_decoder:
            # encoder
1140
            self._check_encoder_attention_for_generate(output.encoder_attentions, batch_size, config, seq_length)
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
            # decoder
            self._check_attentions_for_generate(
                num_sequences_in_output,
                output.decoder_attentions,
                min_length=1,
                max_length=output.sequences.shape[-1],
                config=config,
                use_cache=use_cache,
            )
        else:
            # if use_cache first input is equal to no use_cache, so skip here
            attentions = output.attentions if not use_cache else output.attentions[1:]
            min_length = seq_length if not use_cache else seq_length + 1
            self._check_attentions_for_generate(
                num_sequences_in_output,
                attentions=attentions,
                min_length=min_length,
                max_length=output.sequences.shape[-1],
                config=config,
                use_cache=use_cache,
            )

        # Hidden States
        if config.is_encoder_decoder:
            # encoder
1166
1167
            self._check_encoder_hidden_states_for_generate(
                output.encoder_hidden_states, batch_size, config, seq_length
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
            )

            # decoder
            self._check_hidden_states_for_generate(
                num_sequences_in_output,
                output.decoder_hidden_states,
                min_length=1,
                max_length=output.sequences.shape[-1],
                config=config,
                use_cache=use_cache,
            )
        else:
            # if use_cache first input is equal to no use_cache, so skip here
            hidden_states = output.hidden_states if not use_cache else output.hidden_states[1:]
            min_length = seq_length if not use_cache else seq_length + 1
            self._check_hidden_states_for_generate(
                num_sequences_in_output,
                hidden_states,
                min_length=min_length,
                max_length=output.sequences.shape[-1],
                config=config,
                use_cache=use_cache,
            )

    def _check_scores(self, batch_size, scores, length, config):
        expected_shape = (batch_size, config.vocab_size)
        self.assertIsInstance(scores, tuple)
        self.assertEqual(len(scores), length)
        self.assertListEqual([iter_scores.shape for iter_scores in scores], [expected_shape] * len(scores))

    def _check_attentions_for_generate(
        self, batch_size, attentions, min_length, max_length, config, use_cache=False, num_beam_groups=1
    ):
        self.assertIsInstance(attentions, tuple)
        self.assertListEqual(
            [isinstance(iter_attentions, tuple) for iter_attentions in attentions], [True] * len(attentions)
        )
        self.assertEqual(len(attentions), (max_length - min_length) * num_beam_groups)

        for idx, iter_attentions in enumerate(attentions):
            tgt_len = min_length + idx if not use_cache else 1
            src_len = min_length + idx

            expected_shape = (
                batch_size * num_beam_groups,
                config.num_attention_heads,
                tgt_len,
                src_len,
            )
            # check attn size
            self.assertListEqual(
                [layer_attention.shape for layer_attention in iter_attentions], [expected_shape] * len(iter_attentions)
            )

1222
1223
1224
1225
1226
1227
1228
1229
    def _check_encoder_attention_for_generate(self, attentions, batch_size, config, seq_length):
        encoder_expected_shape = (batch_size, config.num_attention_heads, seq_length, seq_length)
        self.assertIsInstance(attentions, tuple)
        self.assertListEqual(
            [layer_attentions.shape for layer_attentions in attentions],
            [encoder_expected_shape] * len(attentions),
        )

1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
    def _check_hidden_states_for_generate(
        self, batch_size, hidden_states, min_length, max_length, config, use_cache=False, num_beam_groups=1
    ):
        self.assertIsInstance(hidden_states, tuple)
        self.assertListEqual(
            [isinstance(iter_hidden_states, tuple) for iter_hidden_states in hidden_states],
            [True] * len(hidden_states),
        )
        self.assertEqual(len(hidden_states), (max_length - min_length) * num_beam_groups)

        for idx, iter_hidden_states in enumerate(hidden_states):
            seq_len = min_length + idx if not use_cache else 1
            expected_shape = (batch_size * num_beam_groups, seq_len, config.hidden_size)
            # check hidden size
            self.assertListEqual(
                [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states],
                [expected_shape] * len(iter_hidden_states),
            )
1248

1249
1250
1251
1252
1253
1254
1255
1256
    def _check_encoder_hidden_states_for_generate(self, hidden_states, batch_size, config, seq_length):
        encoder_expected_shape = (batch_size, seq_length, config.hidden_size)
        self.assertIsInstance(hidden_states, tuple)
        self.assertListEqual(
            [layer_hidden_states.shape for layer_hidden_states in hidden_states],
            [encoder_expected_shape] * len(hidden_states),
        )

1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360

@require_torch
class UtilsFunctionsTest(unittest.TestCase):

    # tests whether the top_k_top_p function behaves as expected
    def test_top_k_top_p_filtering(self):
        logits = torch.tensor(
            [
                [
                    8.2220991,  # 3rd highest value; idx. 0
                    -0.5620044,
                    5.23229752,
                    4.0386393,
                    -6.8798378,
                    -0.54785802,
                    -3.2012153,
                    2.92777176,
                    1.88171953,
                    7.35341276,
                    8.43207833,  # 2nd highest value; idx. 10
                    -9.85711836,
                    -5.96209236,
                    -1.13039161,
                    -7.1115294,
                    -0.8369633,
                    -5.3186408,
                    7.06427407,
                    0.81369344,
                    -0.82023817,
                    -5.9179796,
                    0.58813443,
                    -6.99778438,
                    4.71551189,
                    -0.18771637,
                    7.44020759,  # 4th highest value; idx. 25
                    9.38450987,  # 1st highest value; idx. 26
                    2.12662941,
                    -9.32562038,
                    2.35652522,
                ],  # cummulative prob of 4 highest values <= 0.6
                [
                    0.58425518,
                    4.53139238,
                    -5.57510464,
                    -6.28030699,
                    -7.19529503,
                    -4.02122551,
                    1.39337037,
                    -6.06707057,
                    1.59480517,
                    -9.643119,
                    0.03907799,
                    0.67231762,
                    -8.88206726,
                    6.27115922,  # 4th highest value; idx. 13
                    2.28520723,
                    4.82767506,
                    4.30421368,
                    8.8275313,  # 2nd highest value; idx. 17
                    5.44029958,
                    -4.4735794,
                    7.38579536,  # 3rd highest value; idx. 20
                    -2.91051663,
                    2.61946077,
                    -2.5674762,
                    -9.48959302,
                    -4.02922645,
                    -1.35416918,
                    9.67702323,  # 1st highest value; idx. 27
                    -5.89478553,
                    1.85370467,
                ],  # cummulative prob of 4 highest values <= 0.6
            ],
            dtype=torch.float,
            device=torch_device,
        )

        non_inf_expected_idx = torch.tensor(
            [[0, 0], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 20], [1, 27]],
            dtype=torch.long,
            device=torch_device,
        )  # expected non filtered idx as noted above

        non_inf_expected_output = torch.tensor(
            [
                8.2221,
                8.4321,
                7.4402,
                9.3845,
                6.2712,
                8.8275,
                7.3858,
                9.6770,
            ],  # expected non filtered values as noted above
            dtype=torch.float,
            device=torch_device,
        )

        output = top_k_top_p_filtering(logits, top_k=10, top_p=0.6, min_tokens_to_keep=4)
        non_inf_output = output[output != -float("inf")].to(device=torch_device)
        non_inf_idx = (output != -float("inf")).nonzero().to(device=torch_device)

        self.assertTrue(torch.allclose(non_inf_expected_output, non_inf_output, atol=1e-12))
        self.assertTrue(torch.all(torch.eq(non_inf_expected_idx, non_inf_idx)))
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376


@require_torch
class GenerationIntegrationTests(unittest.TestCase):
    @slow
    def test_diverse_beam_search(self):
        article = """Justin Timberlake and Jessica Biel, welcome to parenthood.
        The celebrity couple announced the arrival of their son, Silas Randall Timberlake, in statements to People.
        "Silas was the middle name of Timberlake's maternal grandfather Bill Bomar, who died in 2012, while Randall is the musician's own middle name, as well as his father's first," People reports.
        The couple announced the pregnancy in January, with an Instagram post. It is the first baby for both."""

        bart_tokenizer = BartTokenizer.from_pretrained("facebook/bart-large-cnn")
        bart_model = BartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn").to(torch_device)
        input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)

        outputs = bart_model.generate(
1377
1378
1379
1380
1381
1382
            input_ids,
            num_beams=4,
            num_return_sequences=2,
            num_beam_groups=4,
            diversity_penalty=2.0,
            remove_invalid_values=True,
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
        )

        generated_text = bart_tokenizer.batch_decode(outputs, skip_special_tokens=True)

        self.assertListEqual(
            generated_text,
            [
                "The couple announced the birth of their son, Silas Randall Timberlake, in a statement. Silas was the middle name of Timberlake's maternal grandfather Bill Bomar. Randall is the musician's own middle name, as well as his father's first. It is the first baby for both of them.",
                "Justin Timberlake and Jessica Biel have a son. The baby is named Silas Randall Timberlake. It is the first child for both. The couple announced the pregnancy in January. The name Silas is the middle name of Timberlake's maternal grandfather. It's also his own middle name.",
            ],
        )
1394
1395
1396

    def test_max_length_backward_compat_greedy(self):
        article = """Justin Timberlake and Jessica Biel, welcome to parenthood."""
1397
1398
1399
1400
        bart_tokenizer = BartTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
        bart_model = BartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart").to(
            torch_device
        )
1401
1402
1403
1404
1405
1406
        input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)

        max_length = 20
        input_ids = input_ids.expand(2, -1)
        model_kwargs = bart_model._prepare_encoder_decoder_kwargs_for_generation(input_ids, {})
        input_ids = bart_model._prepare_decoder_input_ids_for_generation(
1407
            input_ids.shape[0],
1408
1409
1410
1411
            decoder_start_token_id=bart_model.config.decoder_start_token_id,
            bos_token_id=bart_model.config.bos_token_id,
        )

1412
1413
1414
1415
1416
1417
1418
1419
        with self.assertWarns(UserWarning):
            bart_model.greedy_search(
                input_ids,
                max_length=max_length,
                pad_token_id=bart_model.config.pad_token_id,
                eos_token_id=bart_model.config.eos_token_id,
                **model_kwargs,
            )
1420
1421
1422

    def test_max_length_backward_compat_sample(self):
        article = """Justin Timberlake and Jessica Biel, welcome to parenthood."""
1423
1424
1425
1426
        bart_tokenizer = BartTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
        bart_model = BartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart").to(
            torch_device
        )
1427
1428
1429
1430
1431
1432
        input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)

        max_length = 20
        input_ids = input_ids.expand(2, -1)
        model_kwargs = bart_model._prepare_encoder_decoder_kwargs_for_generation(input_ids, {})
        input_ids = bart_model._prepare_decoder_input_ids_for_generation(
1433
            input_ids.shape[0],
1434
1435
1436
            decoder_start_token_id=bart_model.config.decoder_start_token_id,
            bos_token_id=bart_model.config.bos_token_id,
        )
1437
        with torch.no_grad():
1438
1439
1440
1441
1442
1443
1444
1445
            with self.assertWarns(UserWarning):
                bart_model.sample(
                    input_ids,
                    max_length=max_length,
                    pad_token_id=bart_model.config.pad_token_id,
                    eos_token_id=bart_model.config.eos_token_id,
                    **model_kwargs,
                )
1446
1447
1448

    def test_max_length_backward_compat_beam_search(self):
        article = """Justin Timberlake and Jessica Biel, welcome to parenthood."""
1449
1450
1451
1452
        bart_tokenizer = BartTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
        bart_model = BartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart").to(
            torch_device
        )
1453
1454
1455
1456
1457
1458
1459
1460
1461
        input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)

        batch_size = 1
        max_length = 20
        num_beams = 2

        input_ids = input_ids.expand(2, -1)
        model_kwargs = bart_model._prepare_encoder_decoder_kwargs_for_generation(input_ids, {})
        input_ids = bart_model._prepare_decoder_input_ids_for_generation(
1462
            input_ids.shape[0],
1463
1464
1465
1466
1467
1468
1469
1470
1471
            decoder_start_token_id=bart_model.config.decoder_start_token_id,
            bos_token_id=bart_model.config.bos_token_id,
        )

        beam_scorer = BeamSearchScorer(
            batch_size=batch_size,
            num_beams=num_beams,
            device=torch_device,
        )
1472
1473
1474
1475
        with self.assertWarns(UserWarning):
            _ = bart_model.beam_search(
                input_ids, num_beams=num_beams, max_length=max_length, beam_scorer=beam_scorer, **model_kwargs
            )
1476
1477
1478

    def test_max_length_backward_compat_group_beam_search(self):
        article = """Justin Timberlake and Jessica Biel, welcome to parenthood."""
1479
1480
1481
1482
        bart_tokenizer = BartTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
        bart_model = BartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart").to(
            torch_device
        )
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
        input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)

        batch_size = 1
        max_length = 20
        num_beams = 6
        num_beam_groups = 3
        num_return_sequences = num_beams * batch_size

        input_ids = input_ids.expand(6, -1)
        model_kwargs = bart_model._prepare_encoder_decoder_kwargs_for_generation(input_ids, {})
        input_ids = bart_model._prepare_decoder_input_ids_for_generation(
1494
            input_ids.shape[0],
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
            decoder_start_token_id=bart_model.config.decoder_start_token_id,
            bos_token_id=bart_model.config.bos_token_id,
        )

        diverse_beam_scorer = BeamSearchScorer(
            batch_size=batch_size,
            num_beams=num_beams,
            device=torch_device,
            num_beam_hyps_to_keep=num_return_sequences,
            num_beam_groups=num_beam_groups,
        )
1506
1507
1508
1509
        with self.assertWarns(UserWarning):
            bart_model.group_beam_search(
                input_ids, diverse_beam_scorer, num_beams=num_beams, max_length=max_length, **model_kwargs
            )
1510
1511
1512

    def test_max_length_warning_if_different(self):
        article = """Justin Timberlake and Jessica Biel, welcome to parenthood."""
1513
1514
1515
1516
        bart_tokenizer = BartTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
        bart_model = BartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart").to(
            torch_device
        )
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
        input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)

        batch_size = 1

        max_length = 20
        num_beams = 6
        num_beam_groups = 3
        num_return_sequences = num_beams * batch_size
        stopping_criteria_max_length = 18
        stopping_criteria = StoppingCriteriaList([MaxLengthCriteria(max_length=stopping_criteria_max_length)])

        # Greedy
        input_ids = input_ids.expand(6, -1)
        model_kwargs = bart_model._prepare_encoder_decoder_kwargs_for_generation(input_ids, {})
        input_ids = bart_model._prepare_decoder_input_ids_for_generation(
1532
            input_ids.shape[0],
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
            decoder_start_token_id=bart_model.config.decoder_start_token_id,
            bos_token_id=bart_model.config.bos_token_id,
        )

        with self.assertWarns(UserWarning):
            bart_model.greedy_search(
                input_ids,
                max_length=max_length,
                pad_token_id=bart_model.config.pad_token_id,
                stopping_criteria=stopping_criteria,
                eos_token_id=bart_model.config.eos_token_id,
                **model_kwargs,
            )

        # Sample
        with self.assertWarns(UserWarning):
1549
1550
1551
1552
1553
1554
1555
1556
1557
            with torch.no_grad():
                bart_model.sample(
                    input_ids,
                    max_length=max_length,
                    stopping_criteria=stopping_criteria,
                    pad_token_id=bart_model.config.pad_token_id,
                    eos_token_id=bart_model.config.eos_token_id,
                    **model_kwargs,
                )
1558
1559
1560
1561
1562
1563
1564
1565

        # Beam
        beam_scorer = BeamSearchScorer(
            batch_size=batch_size,
            num_beams=num_beams,
            device=torch_device,
        )
        with self.assertWarns(UserWarning):
1566
1567
1568
1569
1570
1571
1572
1573
1574
            with torch.no_grad():
                bart_model.beam_search(
                    input_ids,
                    num_beams=num_beams,
                    stopping_criteria=stopping_criteria,
                    max_length=max_length,
                    beam_scorer=beam_scorer,
                    **model_kwargs,
                )
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592

        # Grouped beam search
        diverse_beam_scorer = BeamSearchScorer(
            batch_size=batch_size,
            num_beams=num_beams,
            device=torch_device,
            num_beam_hyps_to_keep=num_return_sequences,
            num_beam_groups=num_beam_groups,
        )
        with self.assertWarns(UserWarning):
            bart_model.group_beam_search(
                input_ids,
                diverse_beam_scorer,
                stopping_criteria=stopping_criteria,
                num_beams=num_beams,
                max_length=max_length,
                **model_kwargs,
            )
1593
1594
1595

    def test_beam_search_warning_if_max_length_is_passed(self):
        article = """Justin Timberlake and Jessica Biel, welcome to parenthood."""
1596
1597
1598
1599
        bart_tokenizer = BartTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
        bart_model = BartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart").to(
            torch_device
        )
1600
1601
1602
1603
1604
1605
1606
1607

        batch_size = 1
        num_beams = 3

        input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)
        input_ids = input_ids.expand(num_beams, -1)
        model_kwargs = bart_model._prepare_encoder_decoder_kwargs_for_generation(input_ids, {})

1608
1609
1610
        # pretend decoder_input_ids correspond to first encoder input id
        decoder_input_ids = input_ids[:, :1]

1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
        stopping_criteria_max_length = 18
        stopping_criteria = StoppingCriteriaList([MaxLengthCriteria(max_length=stopping_criteria_max_length)])

        with self.assertWarns(UserWarning):
            beam_scorer = BeamSearchScorer(
                batch_size=batch_size,
                num_beams=num_beams,
                device=torch_device,
                max_length=10,
            )

        generated_ids = bart_model.beam_search(
1623
            decoder_input_ids,
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
            num_beams=num_beams,
            stopping_criteria=stopping_criteria,
            beam_scorer=beam_scorer,
            **model_kwargs,
        )

        beam_scorer_no_max_len = BeamSearchScorer(
            batch_size=batch_size,
            num_beams=num_beams,
            device=torch_device,
        )

        generated_ids_no_max_len = bart_model.beam_search(
1637
            decoder_input_ids,
1638
1639
1640
1641
1642
1643
1644
1645
            num_beams=num_beams,
            stopping_criteria=stopping_criteria,
            beam_scorer=beam_scorer_no_max_len,
            **model_kwargs,
        )

        # BeamSearchScorer max_length should not influence "real" max_length
        self.assertEqual(generated_ids.tolist(), generated_ids_no_max_len.tolist())
1646

1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
    def test_custom_stopping_criteria_overload_error(self):
        article = """Justin Timberlake and Jessica Biel, welcome to parenthood."""
        bart_tokenizer = BartTokenizer.from_pretrained("sshleifer/bart-tiny-random")
        bart_model = BartForConditionalGeneration.from_pretrained("sshleifer/bart-tiny-random").to(torch_device)

        input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)
        stopping_criteria = StoppingCriteriaList()
        stopping_criteria.append(MaxLengthCriteria(max_length=42))
        with self.assertRaises(ValueError):
            bart_model.generate(input_ids, stopping_criteria=stopping_criteria)
        with self.assertRaises(ValueError):
            bart_model.generate(input_ids, stopping_criteria=stopping_criteria, max_length=32)

    def test_custom_stopping_criteria(self):
        article = """Justin Timberlake and Jessica Biel, welcome to parenthood."""
        bart_tokenizer = BartTokenizer.from_pretrained("sshleifer/bart-tiny-random")
        bart_model = BartForConditionalGeneration.from_pretrained("sshleifer/bart-tiny-random").to(torch_device)
        input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)

        class DummyCriteria(StoppingCriteria):
            def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
                return input_ids.shape[-1] >= 20

        stopping_criteria = StoppingCriteriaList()
        stopping_criteria.append(DummyCriteria())

        self.assertEqual(
            list(bart_model.generate(input_ids, stopping_criteria=stopping_criteria, max_length=22).shape),
            [1, 20],
        )
        self.assertEqual(
            list(bart_model.generate(input_ids, stopping_criteria=stopping_criteria, max_length=18).shape),
            [1, 18],
        )

    def test_custom_logits_processor(self):
        bart_tokenizer = BartTokenizer.from_pretrained("sshleifer/bart-tiny-random")
        article = """Justin Timberlake and Jessica Biel, welcome to parenthood."""
        bart_model = BartForConditionalGeneration.from_pretrained("sshleifer/bart-tiny-random").to(torch_device)
        input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)

        logits_processor = LogitsProcessorList()
        logits_processor.append(MinLengthLogitsProcessor(min_length=10, eos_token_id=0))
        with self.assertRaises(ValueError):
            bart_model.generate(input_ids, logits_processor=logits_processor)

        bart_model.config.min_length = None
        bart_model.generate(input_ids, logits_processor=logits_processor)

1696
    def test_max_new_tokens_encoder_decoder(self):
1697
        article = """Justin Timberlake and Jessica Biel, welcome to parenthood."""
1698
1699
1700
1701
        bart_tokenizer = BartTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
        bart_model = BartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart").to(
            torch_device
        )
1702
1703
        input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)

1704
        self.assertEqual(list(input_ids.shape), [1, 29])
1705
1706

        max_new_tokens = 3
1707
        bart_model.config.max_length = 20
1708
        bart_model.config.eos_token_id = None
1709
1710

        # Encoder decoder call
1711
1712
1713
1714
1715
1716
        outputs = bart_model.generate(input_ids, max_new_tokens=max_new_tokens)
        # 1 BOS + 3 new tokens
        self.assertEqual(list(outputs.shape), [1, 4])

        # Decoder only call
        outputs = bart_model.generate(decoder_input_ids=input_ids, max_new_tokens=max_new_tokens)
1717
1718
        # 29 + 3 new tokens
        self.assertEqual(list(outputs.shape), [1, 32])
1719

1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
        # Encoder decoder call > 20
        outputs = bart_model.generate(max_new_tokens=max_new_tokens + 20)

        # 1 BOS + 20 + 3 new tokens
        self.assertEqual(list(outputs.shape), [1, 24])

        # max_new_tokens and max_length serve the same purpose and should not be used together.
        with self.assertWarns(UserWarning):
            bart_model.generate(decoder_input_ids=input_ids, max_new_tokens=10, max_length=20)

    def test_max_new_tokens_decoder_only(self):
        article = """Justin Timberlake."""
        gpt2_tokenizer = GPT2Tokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        gpt2_model = GPT2LMHeadModel.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)
        input_ids = gpt2_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)

        self.assertEqual(list(input_ids.shape), [1, 9])

        max_new_tokens = 3
        gpt2_model.config.max_length = 20

        # call < 20
        outputs = gpt2_model.generate(input_ids, max_new_tokens=max_new_tokens)

        # 9 input_ids + 3 new tokens
        self.assertEqual(list(outputs.shape), [1, 12])

        # call > 20
        outputs = gpt2_model.generate(max_new_tokens=max_new_tokens + 20)

        # 1 BOS token + 23 new tokens
        self.assertEqual(list(outputs.shape), [1, 24])

1753
1754
        # max_new_tokens and max_length serve the same purpose and should not be used together.
        with self.assertWarns(UserWarning):
1755
            gpt2_model.generate(decoder_input_ids=input_ids, max_new_tokens=10, max_length=20)
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771

    def test_encoder_decoder_generate_with_inputs_embeds(self):
        article = """Justin Timberlake and Jessica Biel, welcome to parenthood."""
        tokenizer = BartTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
        model = BartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart", max_length=5).to(
            torch_device
        )
        model.config.eos_token_id = None
        input_ids = tokenizer(article, return_tensors="pt").input_ids.to(torch_device)
        inputs_embeds = model.get_input_embeddings()(input_ids)

        output_sequences = model.generate(inputs_embeds=inputs_embeds)

        # make sure model generated correctly until `max_length`
        self.assertEqual(output_sequences.shape, (1, 5))

1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
    def test_encoder_decoder_generate_attention_mask(self):
        articles = ["Timberlake", "Jessica Biel, welcome to parenthood among other things"]
        tokenizer = BartTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
        # need extrem generation values here to force this test
        # to fail when `attention_mask` is not correctly treated in generate
        model = BartForConditionalGeneration.from_pretrained(
            "hf-internal-testing/tiny-random-bart", max_length=50, num_beams=5, num_return_sequences=5
        ).to(torch_device)

        model.config.eos_token_id = None
        input_ids = tokenizer(articles[0], return_tensors="pt").input_ids.to(torch_device)
        input_ids_batched = tokenizer(articles, padding=True, return_tensors="pt").input_ids.to(torch_device)

        output_sequences_batched = model.generate(
            input_ids=input_ids_batched, return_dict_in_generate=True, output_scores=True
        )
        output_sequences = model.generate(input_ids=input_ids, return_dict_in_generate=True, output_scores=True)

        batched_out = output_sequences_batched.sequences_scores
        out = output_sequences.sequences_scores

        diff = (batched_out[:5].sum() - out.sum()).abs()

        self.assertTrue(diff < 1e-4)

1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
    def test_decoder_generate_with_inputs_embeds(self):
        article = """I need input_ids to generate"""
        tokenizer = GPT2Tokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        model = GPT2LMHeadModel.from_pretrained("hf-internal-testing/tiny-random-gpt2", max_length=5).to(torch_device)
        input_ids = tokenizer(article, return_tensors="pt").input_ids.to(torch_device)
        inputs_embeds = model.get_input_embeddings()(input_ids)

        # cannot generate from `inputs_embeds` for decoder only
        with self.assertRaises(ValueError):
            model.generate(inputs_embeds=inputs_embeds)
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818

    def test_generate_input_ids_as_kwarg(self):
        article = """I need input_ids to generate"""
        tokenizer = GPT2Tokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        model = GPT2LMHeadModel.from_pretrained("hf-internal-testing/tiny-random-gpt2", max_length=15).to(torch_device)
        input_ids = tokenizer(article, return_tensors="pt").input_ids.to(torch_device)
        output_sequences_kwargs = model.generate(input_ids=input_ids).cpu()
        output_sequences = model.generate(input_ids).cpu()

        self.assertListEqual(output_sequences.tolist(), output_sequences_kwargs.tolist())
        self.assertEqual(output_sequences.shape, (1, 15))

1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
    def test_generate_non_nlp_input_ids_as_kwarg(self):
        model = ImageGPTForCausalImageModeling.from_pretrained(
            "hf-internal-testing/tiny-random-imagegpt", max_length=10
        ).to(torch_device)
        input_ids = ids_tensor((3, 5), vocab_size=10)

        output_sequences_kwargs = model.generate(input_ids=input_ids).cpu()
        output_sequences = model.generate(input_ids).cpu()

        self.assertListEqual(output_sequences.tolist(), output_sequences_kwargs.tolist())
        self.assertEqual(output_sequences.shape, (3, 10))

1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
    def test_generate_input_ids_as_encoder_kwarg(self):
        article = """Justin Timberlake and Jessica Biel, welcome to parenthood."""
        tokenizer = BartTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
        model = BartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart", max_length=5).to(
            torch_device
        )
        model.config.eos_token_id = None
        input_ids = tokenizer(article, return_tensors="pt").input_ids.to(torch_device)
        output_sequences_kwargs = model.generate(input_ids=input_ids).cpu()
        output_sequences = model.generate(input_ids).cpu()

        self.assertListEqual(output_sequences.tolist(), output_sequences_kwargs.tolist())
        self.assertEqual(output_sequences.shape, (1, 5))

    def test_generate_inputs_and_encoder_kwargs(self):
        article = """I need input_ids to generate"""
        tokenizer = GPT2Tokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        model = GPT2LMHeadModel.from_pretrained("hf-internal-testing/tiny-random-gpt2", max_length=10).to(torch_device)
        input_ids = tokenizer(article, return_tensors="pt").input_ids.to(torch_device)
        with self.assertRaises(ValueError):
            model.generate(input_ids, input_ids=input_ids)

    def test_generate_too_many_encoder_kwargs(self):
        article = """I need input_ids to generate"""
        tokenizer = GPT2Tokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        model = GPT2LMHeadModel.from_pretrained("hf-internal-testing/tiny-random-gpt2", max_length=10).to(torch_device)
        input_ids = tokenizer(article, return_tensors="pt").input_ids.to(torch_device)
        with self.assertRaises(ValueError):
            model.generate(input_ids=input_ids, input_values=input_ids)

    def test_generate_input_values_as_encoder_kwarg(self):
        input_values = floats_tensor((2, 250))
        model = SpeechEncoderDecoderModel.from_pretrained("hf-internal-testing/tiny-random-speech-encoder-decoder")
        model = model.to(torch_device)
        output_sequences_kwargs = model.generate(input_values=input_values, max_length=5).cpu()
        output_sequences = model.generate(input_values, max_length=5).cpu()

        self.assertListEqual(output_sequences.tolist(), output_sequences_kwargs.tolist())
        self.assertEqual(output_sequences.shape, (2, 5))

    def test_generate_input_features_as_encoder_kwarg(self):
        input_features = floats_tensor((3, 20, 24))
        model = Speech2TextForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-speech_to_text")
        model = model.to(torch_device)
        output_sequences_kwargs = model.generate(input_features=input_features, max_length=5).cpu()
        output_sequences = model.generate(input_features, max_length=5).cpu()

        self.assertListEqual(output_sequences.tolist(), output_sequences_kwargs.tolist())
        self.assertEqual(output_sequences.shape, (3, 5))

    def test_generate_pixel_values_as_encoder_kwarg(self):
        pixel_values = floats_tensor((2, 3, 30, 30))
        model = VisionEncoderDecoderModel.from_pretrained("hf-internal-testing/tiny-random-vision-encoder-decoder")
        model = model.to(torch_device)
        output_sequences_kwargs = model.generate(pixel_values=pixel_values, max_length=5).cpu()
        output_sequences = model.generate(pixel_values, max_length=5).cpu()

        self.assertListEqual(output_sequences.tolist(), output_sequences_kwargs.tolist())
        self.assertEqual(output_sequences.shape, (2, 5))