test_processor_auto.py 4.75 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2021 the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import json
Sylvain Gugger's avatar
Sylvain Gugger committed
17
18
19
import os
import tempfile
import unittest
20
from shutil import copyfile
Sylvain Gugger's avatar
Sylvain Gugger committed
21

22
from transformers import AutoProcessor, AutoTokenizer, Wav2Vec2Config, Wav2Vec2FeatureExtractor, Wav2Vec2Processor
23
from transformers.file_utils import FEATURE_EXTRACTOR_NAME
24
from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE
Sylvain Gugger's avatar
Sylvain Gugger committed
25
26
27
28
29


SAMPLE_PROCESSOR_CONFIG = os.path.join(
    os.path.dirname(os.path.abspath(__file__)), "fixtures/dummy_feature_extractor_config.json"
)
30
SAMPLE_VOCAB = os.path.join(os.path.dirname(os.path.abspath(__file__)), "fixtures/vocab.json")
Sylvain Gugger's avatar
Sylvain Gugger committed
31
32
33
34
35
36
37


class AutoFeatureExtractorTest(unittest.TestCase):
    def test_processor_from_model_shortcut(self):
        processor = AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h")
        self.assertIsInstance(processor, Wav2Vec2Processor)

38
    def test_processor_from_local_directory_from_repo(self):
Sylvain Gugger's avatar
Sylvain Gugger committed
39
40
41
42
43
44
45
46
47
48
49
        with tempfile.TemporaryDirectory() as tmpdirname:
            model_config = Wav2Vec2Config()
            processor = AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h")

            # save in new folder
            model_config.save_pretrained(tmpdirname)
            processor.save_pretrained(tmpdirname)

            processor = AutoProcessor.from_pretrained(tmpdirname)

        self.assertIsInstance(processor, Wav2Vec2Processor)
50
51
52
53
54
55
56
57
58
59

    def test_processor_from_local_directory_from_extractor_config(self):
        with tempfile.TemporaryDirectory() as tmpdirname:
            # copy relevant files
            copyfile(SAMPLE_PROCESSOR_CONFIG, os.path.join(tmpdirname, FEATURE_EXTRACTOR_NAME))
            copyfile(SAMPLE_VOCAB, os.path.join(tmpdirname, "vocab.json"))

            processor = AutoProcessor.from_pretrained(tmpdirname)

        self.assertIsInstance(processor, Wav2Vec2Processor)
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

    def test_processor_from_feat_extr_processor_class(self):
        with tempfile.TemporaryDirectory() as tmpdirname:
            feature_extractor = Wav2Vec2FeatureExtractor()
            tokenizer = AutoTokenizer.from_pretrained("facebook/wav2vec2-base-960h")

            processor = Wav2Vec2Processor(feature_extractor, tokenizer)

            # save in new folder
            processor.save_pretrained(tmpdirname)

            # drop `processor_class` in tokenizer
            with open(os.path.join(tmpdirname, TOKENIZER_CONFIG_FILE), "r") as f:
                config_dict = json.load(f)
                config_dict.pop("processor_class")

            with open(os.path.join(tmpdirname, TOKENIZER_CONFIG_FILE), "w") as f:
                f.write(json.dumps(config_dict))

            processor = AutoProcessor.from_pretrained(tmpdirname)

        self.assertIsInstance(processor, Wav2Vec2Processor)

    def test_processor_from_tokenizer_processor_class(self):
        with tempfile.TemporaryDirectory() as tmpdirname:
            feature_extractor = Wav2Vec2FeatureExtractor()
            tokenizer = AutoTokenizer.from_pretrained("facebook/wav2vec2-base-960h")

            processor = Wav2Vec2Processor(feature_extractor, tokenizer)

            # save in new folder
            processor.save_pretrained(tmpdirname)

            # drop `processor_class` in feature extractor
            with open(os.path.join(tmpdirname, FEATURE_EXTRACTOR_NAME), "r") as f:
                config_dict = json.load(f)
                config_dict.pop("processor_class")

            with open(os.path.join(tmpdirname, FEATURE_EXTRACTOR_NAME), "w") as f:
                f.write(json.dumps(config_dict))

            processor = AutoProcessor.from_pretrained(tmpdirname)

        self.assertIsInstance(processor, Wav2Vec2Processor)

    def test_processor_from_local_directory_from_model_config(self):
        with tempfile.TemporaryDirectory() as tmpdirname:
            model_config = Wav2Vec2Config(processor_class="Wav2Vec2Processor")
            model_config.save_pretrained(tmpdirname)
            # copy relevant files
            copyfile(SAMPLE_VOCAB, os.path.join(tmpdirname, "vocab.json"))
            # create emtpy sample processor
            with open(os.path.join(tmpdirname, FEATURE_EXTRACTOR_NAME), "w") as f:
                f.write("{}")

            processor = AutoProcessor.from_pretrained(tmpdirname)

        self.assertIsInstance(processor, Wav2Vec2Processor)