test_modeling_auto.py 9.86 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16
17

import logging
Aymeric Augustin's avatar
Aymeric Augustin committed
18
import unittest
thomwolf's avatar
thomwolf committed
19

20
from transformers import is_torch_available
21

Julien Chaumond's avatar
Julien Chaumond committed
22
from .utils import DUMMY_UNKWOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, require_torch, slow
Aymeric Augustin's avatar
Aymeric Augustin committed
23

24

25
if is_torch_available():
26
27
28
    from transformers import (
        AutoConfig,
        BertConfig,
29
30
        GPT2Config,
        T5Config,
31
32
        AutoModel,
        BertModel,
thomwolf's avatar
thomwolf committed
33
34
        AutoModelForPreTraining,
        BertForPreTraining,
35
36
        AutoModelForCausalLM,
        GPT2LMHeadModel,
37
        AutoModelWithLMHead,
38
        AutoModelForMaskedLM,
39
        BertForMaskedLM,
Julien Chaumond's avatar
Julien Chaumond committed
40
        RobertaForMaskedLM,
41
42
        AutoModelForSeq2SeqLM,
        T5ForConditionalGeneration,
43
44
45
46
        AutoModelForSequenceClassification,
        BertForSequenceClassification,
        AutoModelForQuestionAnswering,
        BertForQuestionAnswering,
47
48
        AutoModelForTokenClassification,
        BertForTokenClassification,
49
    )
50
    from transformers.modeling_bert import BERT_PRETRAINED_MODEL_ARCHIVE_LIST
51
52
    from transformers.modeling_gpt2 import GPT2_PRETRAINED_MODEL_ARCHIVE_LIST
    from transformers.modeling_t5 import T5_PRETRAINED_MODEL_ARCHIVE_LIST
Lysandre's avatar
Lysandre committed
53
54
55
56
57
58
59
    from transformers.modeling_auto import (
        MODEL_MAPPING,
        MODEL_FOR_PRETRAINING_MAPPING,
        MODEL_FOR_QUESTION_ANSWERING_MAPPING,
        MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
        MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
        MODEL_WITH_LM_HEAD_MAPPING,
60
61
62
        MODEL_FOR_CAUSAL_LM_MAPPING,
        MODEL_FOR_MASKED_LM_MAPPING,
        MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
Lysandre's avatar
Lysandre committed
63
    )
thomwolf's avatar
thomwolf committed
64
65


66
@require_torch
thomwolf's avatar
thomwolf committed
67
class AutoModelTest(unittest.TestCase):
68
    @slow
thomwolf's avatar
thomwolf committed
69
70
    def test_model_from_pretrained(self):
        logging.basicConfig(level=logging.INFO)
71
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
thomwolf's avatar
thomwolf committed
72
73
74
75
76
77
78
79
80
81
82
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

            model = AutoModel.from_pretrained(model_name)
            model, loading_info = AutoModel.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, BertModel)
            for value in loading_info.values():
                self.assertEqual(len(value), 0)

thomwolf's avatar
thomwolf committed
83
84
85
    @slow
    def test_model_for_pretraining_from_pretrained(self):
        logging.basicConfig(level=logging.INFO)
86
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
thomwolf's avatar
thomwolf committed
87
88
89
90
91
92
93
94
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

            model = AutoModelForPreTraining.from_pretrained(model_name)
            model, loading_info = AutoModelForPreTraining.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, BertForPreTraining)
95
96
97
            for key, value in loading_info.items():
                # Only one value should not be initialized and in the missing keys.
                self.assertEqual(len(value), 1 if key == "missing_keys" else 0)
thomwolf's avatar
thomwolf committed
98

99
    @slow
LysandreJik's avatar
LysandreJik committed
100
101
    def test_lmhead_model_from_pretrained(self):
        logging.basicConfig(level=logging.INFO)
102
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
LysandreJik's avatar
LysandreJik committed
103
104
105
106
107
108
109
110
111
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

            model = AutoModelWithLMHead.from_pretrained(model_name)
            model, loading_info = AutoModelWithLMHead.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, BertForMaskedLM)

112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
    @slow
    def test_model_for_causal_lm(self):
        logging.basicConfig(level=logging.INFO)
        for model_name in GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, GPT2Config)

            model = AutoModelForCausalLM.from_pretrained(model_name)
            model, loading_info = AutoModelForCausalLM.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, GPT2LMHeadModel)

    @slow
    def test_model_for_masked_lm(self):
        logging.basicConfig(level=logging.INFO)
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

            model = AutoModelForMaskedLM.from_pretrained(model_name)
            model, loading_info = AutoModelForMaskedLM.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, BertForMaskedLM)

    @slow
    def test_model_for_encoder_decoder_lm(self):
        logging.basicConfig(level=logging.INFO)
        for model_name in T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, T5Config)

            model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
            model, loading_info = AutoModelForSeq2SeqLM.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, T5ForConditionalGeneration)

151
    @slow
LysandreJik's avatar
LysandreJik committed
152
153
    def test_sequence_classification_model_from_pretrained(self):
        logging.basicConfig(level=logging.INFO)
154
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
LysandreJik's avatar
LysandreJik committed
155
156
157
158
159
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

            model = AutoModelForSequenceClassification.from_pretrained(model_name)
160
161
162
            model, loading_info = AutoModelForSequenceClassification.from_pretrained(
                model_name, output_loading_info=True
            )
LysandreJik's avatar
LysandreJik committed
163
164
165
            self.assertIsNotNone(model)
            self.assertIsInstance(model, BertForSequenceClassification)

166
    @slow
LysandreJik's avatar
LysandreJik committed
167
168
    def test_question_answering_model_from_pretrained(self):
        logging.basicConfig(level=logging.INFO)
169
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
LysandreJik's avatar
LysandreJik committed
170
171
172
173
174
175
176
177
178
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

            model = AutoModelForQuestionAnswering.from_pretrained(model_name)
            model, loading_info = AutoModelForQuestionAnswering.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, BertForQuestionAnswering)

179
180
181
    @slow
    def test_token_classification_model_from_pretrained(self):
        logging.basicConfig(level=logging.INFO)
182
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
183
184
185
186
187
188
189
190
191
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

            model = AutoModelForTokenClassification.from_pretrained(model_name)
            model, loading_info = AutoModelForTokenClassification.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, BertForTokenClassification)

Julien Chaumond's avatar
Julien Chaumond committed
192
193
194
195
    def test_from_pretrained_identifier(self):
        logging.basicConfig(level=logging.INFO)
        model = AutoModelWithLMHead.from_pretrained(SMALL_MODEL_IDENTIFIER)
        self.assertIsInstance(model, BertForMaskedLM)
Julien Chaumond's avatar
Julien Chaumond committed
196
197
        self.assertEqual(model.num_parameters(), 14830)
        self.assertEqual(model.num_parameters(only_trainable=True), 14830)
Julien Chaumond's avatar
Julien Chaumond committed
198
199
200
201
202
203
204

    def test_from_identifier_from_model_type(self):
        logging.basicConfig(level=logging.INFO)
        model = AutoModelWithLMHead.from_pretrained(DUMMY_UNKWOWN_IDENTIFIER)
        self.assertIsInstance(model, RobertaForMaskedLM)
        self.assertEqual(model.num_parameters(), 14830)
        self.assertEqual(model.num_parameters(only_trainable=True), 14830)
Lysandre's avatar
Lysandre committed
205
206
207
208
209
210
211
212
213
214
215
216

    def test_parents_and_children_in_mappings(self):
        # Test that the children are placed before the parents in the mappings, as the `instanceof` will be triggered
        # by the parents and will return the wrong configuration type when using auto models

        mappings = (
            MODEL_MAPPING,
            MODEL_FOR_PRETRAINING_MAPPING,
            MODEL_FOR_QUESTION_ANSWERING_MAPPING,
            MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
            MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
            MODEL_WITH_LM_HEAD_MAPPING,
217
218
219
            MODEL_FOR_CAUSAL_LM_MAPPING,
            MODEL_FOR_MASKED_LM_MAPPING,
            MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
Lysandre's avatar
Lysandre committed
220
221
222
223
224
225
226
227
228
229
230
        )

        for mapping in mappings:
            mapping = tuple(mapping.items())
            for index, (child_config, child_model) in enumerate(mapping[1:]):
                for parent_config, parent_model in mapping[: index + 1]:
                    with self.subTest(
                        msg="Testing if {} is child of {}".format(child_config.__name__, parent_config.__name__)
                    ):
                        self.assertFalse(issubclass(child_config, parent_config))
                        self.assertFalse(issubclass(child_model, parent_model))