test_modeling_tf_xglm.py 10.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Matt's avatar
Matt committed
16
17
from __future__ import annotations

Yih-Dar's avatar
Yih-Dar committed
18
import gc
19
20
21
22
23
24
25
import unittest

from transformers import XGLMConfig, XGLMTokenizer, is_tf_available
from transformers.testing_utils import require_tf, slow

from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
26
from ...test_pipeline_mixin import PipelineTesterMixin
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145


if is_tf_available():
    import tensorflow as tf

    from transformers.models.xglm.modeling_tf_xglm import (
        TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
        TFXGLMForCausalLM,
        TFXGLMModel,
    )


@require_tf
class TFXGLMModelTester:
    config_cls = XGLMConfig
    config_updates = {}
    hidden_act = "gelu"

    def __init__(
        self,
        parent,
        batch_size=14,
        seq_length=7,
        is_training=True,
        use_input_mask=True,
        use_labels=True,
        vocab_size=99,
        d_model=32,
        num_hidden_layers=5,
        num_attention_heads=4,
        ffn_dim=37,
        activation_function="gelu",
        activation_dropout=0.1,
        attention_dropout=0.1,
        max_position_embeddings=512,
        initializer_range=0.02,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_input_mask = use_input_mask
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.hidden_size = d_model
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.ffn_dim = ffn_dim
        self.activation_function = activation_function
        self.activation_dropout = activation_dropout
        self.attention_dropout = attention_dropout
        self.max_position_embeddings = max_position_embeddings
        self.initializer_range = initializer_range
        self.scope = None
        self.bos_token_id = 0
        self.eos_token_id = 2
        self.pad_token_id = 1

    def get_large_model_config(self):
        return XGLMConfig.from_pretrained("facebook/xglm-564M")

    def prepare_config_and_inputs(self):
        input_ids = tf.clip_by_value(
            ids_tensor([self.batch_size, self.seq_length], self.vocab_size), clip_value_min=0, clip_value_max=3
        )

        input_mask = None
        if self.use_input_mask:
            input_mask = random_attention_mask([self.batch_size, self.seq_length])

        config = self.get_config()

        head_mask = floats_tensor([self.num_hidden_layers, self.num_attention_heads], 2)

        return (
            config,
            input_ids,
            input_mask,
            head_mask,
        )

    def get_config(self):
        return XGLMConfig(
            vocab_size=self.vocab_size,
            d_model=self.hidden_size,
            num_layers=self.num_hidden_layers,
            attention_heads=self.num_attention_heads,
            ffn_dim=self.ffn_dim,
            activation_function=self.activation_function,
            activation_dropout=self.activation_dropout,
            attention_dropout=self.attention_dropout,
            max_position_embeddings=self.max_position_embeddings,
            initializer_range=self.initializer_range,
            use_cache=True,
            bos_token_id=self.bos_token_id,
            eos_token_id=self.eos_token_id,
            pad_token_id=self.pad_token_id,
            return_dict=True,
        )

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()

        (
            config,
            input_ids,
            input_mask,
            head_mask,
        ) = config_and_inputs

        inputs_dict = {
            "input_ids": input_ids,
            "head_mask": head_mask,
        }

        return config, inputs_dict


@require_tf
146
class TFXGLMModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
147
148
    all_model_classes = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else ()
    all_generative_model_classes = (TFXGLMForCausalLM,) if is_tf_available() else ()
149
150
151
    pipeline_model_mapping = (
        {"feature-extraction": TFXGLMModel, "text-generation": TFXGLMForCausalLM} if is_tf_available() else {}
    )
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
    test_onnx = False
    test_missing_keys = False
    test_pruning = False

    def setUp(self):
        self.model_tester = TFXGLMModelTester(self)
        self.config_tester = ConfigTester(self, config_class=XGLMConfig, n_embd=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_model_common_attributes(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            assert isinstance(model.get_input_embeddings(), tf.keras.layers.Layer)

            if model_class in self.all_generative_model_classes:
                x = model.get_output_embeddings()
                assert isinstance(x, tf.keras.layers.Layer)
                name = model.get_bias()
                assert name is None
            else:
                x = model.get_output_embeddings()
                assert x is None
                name = model.get_bias()
                assert name is None

    @slow
    def test_model_from_pretrained(self):
        for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            model = TFXGLMModel.from_pretrained(model_name)
            self.assertIsNotNone(model)

    @unittest.skip(reason="Currently, model embeddings are going to undergo a major refactor.")
    def test_resize_token_embeddings(self):
        super().test_resize_token_embeddings()


@require_tf
class TFXGLMModelLanguageGenerationTest(unittest.TestCase):
Yih-Dar's avatar
Yih-Dar committed
194
195
196
197
198
    def tearDown(self):
        super().tearDown()
        # clean-up as much as possible GPU memory occupied by PyTorch
        gc.collect()

199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
    @slow
    def test_lm_generate_xglm(self, verify_outputs=True):
        model = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M")
        input_ids = tf.convert_to_tensor([[2, 268, 9865]], dtype=tf.int32)  # The dog
        # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other
        # fmt: off
        expected_output_ids = [2, 268, 9865, 67, 11, 1988, 57252, 9865, 5, 984, 67, 1988, 213838, 1658, 53, 70446, 33, 6657, 278, 1581]
        # fmt: on
        output_ids = model.generate(input_ids, do_sample=False, num_beams=1)
        if verify_outputs:
            self.assertListEqual(output_ids[0].numpy().tolist(), expected_output_ids)

    @slow
    def test_xglm_sample(self):
        tokenizer = XGLMTokenizer.from_pretrained("facebook/xglm-564M")
        model = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M")

        tf.random.set_seed(0)
        tokenized = tokenizer("Today is a nice day and", return_tensors="tf")
        input_ids = tokenized.input_ids
219
220
221
        # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices)
        with tf.device(":/CPU:0"):
            output_ids = model.generate(input_ids, do_sample=True, seed=[7, 0])
222
223
224
225
226
227
228
229
        output_str = tokenizer.decode(output_ids[0], skip_special_tokens=True)

        EXPECTED_OUTPUT_STR = (
            "Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due"
        )
        self.assertEqual(output_str, EXPECTED_OUTPUT_STR)

    @slow
230
    def test_batch_generation(self):
231
        model = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M")
232
        tokenizer = XGLMTokenizer.from_pretrained("facebook/xglm-564M")
233
234
235

        tokenizer.padding_side = "left"

236
237
238
239
240
241
242
243
244
245
246
247
        # use different length sentences to test batching
        sentences = [
            "This is an extremelly long sentence that only exists to test the ability of the model to cope with "
            "left-padding, such as in batched generation. The output for the sequence below should be the same "
            "regardless of whether left padding is applied or not. When",
            "Hello, my dog is a little",
        ]

        inputs = tokenizer(sentences, return_tensors="tf", padding=True)
        input_ids = inputs["input_ids"]

        outputs = model.generate(input_ids=input_ids, attention_mask=inputs["attention_mask"], max_new_tokens=12)
248

249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
        inputs_non_padded = tokenizer(sentences[0], return_tensors="tf").input_ids
        output_non_padded = model.generate(input_ids=inputs_non_padded, max_new_tokens=12)

        inputs_padded = tokenizer(sentences[1], return_tensors="tf").input_ids
        output_padded = model.generate(input_ids=inputs_padded, max_new_tokens=12)

        batch_out_sentence = tokenizer.batch_decode(outputs, skip_special_tokens=True)
        non_padded_sentence = tokenizer.decode(output_non_padded[0], skip_special_tokens=True)
        padded_sentence = tokenizer.decode(output_padded[0], skip_special_tokens=True)

        expected_output_sentence = [
            "This is an extremelly long sentence that only exists to test the ability of the model to cope with "
            "left-padding, such as in batched generation. The output for the sequence below should be the same "
            "regardless of whether left padding is applied or not. When left padding is applied, the sequence will be "
            "a single",
            "Hello, my dog is a little bit of a shy one, but he is very friendly",
        ]
        self.assertListEqual(expected_output_sentence, batch_out_sentence)
        self.assertListEqual(expected_output_sentence, [non_padded_sentence, padded_sentence])