tokenization_bert.py 24.6 KB
Newer Older
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes."""


import collections
thomwolf's avatar
thomwolf committed
19
import logging
thomwolf's avatar
thomwolf committed
20
21
import os
import unicodedata
22

23
24
import tokenizers as tk

Anthony MOI's avatar
Anthony MOI committed
25
from .tokenization_utils import PreTrainedTokenizer, PreTrainedTokenizerFast
thomwolf's avatar
thomwolf committed
26

Aymeric Augustin's avatar
Aymeric Augustin committed
27

thomwolf's avatar
thomwolf committed
28
29
logger = logging.getLogger(__name__)

30
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"}
31
32

PRETRAINED_VOCAB_FILES_MAP = {
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
    "vocab_file": {
        "bert-base-uncased": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-vocab.txt",
        "bert-large-uncased": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-vocab.txt",
        "bert-base-cased": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-vocab.txt",
        "bert-large-cased": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-vocab.txt",
        "bert-base-multilingual-uncased": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased-vocab.txt",
        "bert-base-multilingual-cased": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased-vocab.txt",
        "bert-base-chinese": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese-vocab.txt",
        "bert-base-german-cased": "https://int-deepset-models-bert.s3.eu-central-1.amazonaws.com/pytorch/bert-base-german-cased-vocab.txt",
        "bert-large-uncased-whole-word-masking": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-vocab.txt",
        "bert-large-cased-whole-word-masking": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-vocab.txt",
        "bert-large-uncased-whole-word-masking-finetuned-squad": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-finetuned-squad-vocab.txt",
        "bert-large-cased-whole-word-masking-finetuned-squad": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-finetuned-squad-vocab.txt",
        "bert-base-cased-finetuned-mrpc": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-finetuned-mrpc-vocab.txt",
        "bert-base-german-dbmdz-cased": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-dbmdz-cased-vocab.txt",
        "bert-base-german-dbmdz-uncased": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-dbmdz-uncased-vocab.txt",
        "bert-base-finnish-cased-v1": "https://s3.amazonaws.com/models.huggingface.co/bert/TurkuNLP/bert-base-finnish-cased-v1/vocab.txt",
        "bert-base-finnish-uncased-v1": "https://s3.amazonaws.com/models.huggingface.co/bert/TurkuNLP/bert-base-finnish-uncased-v1/vocab.txt",
51
    }
thomwolf's avatar
thomwolf committed
52
}
53
54

PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
    "bert-base-uncased": 512,
    "bert-large-uncased": 512,
    "bert-base-cased": 512,
    "bert-large-cased": 512,
    "bert-base-multilingual-uncased": 512,
    "bert-base-multilingual-cased": 512,
    "bert-base-chinese": 512,
    "bert-base-german-cased": 512,
    "bert-large-uncased-whole-word-masking": 512,
    "bert-large-cased-whole-word-masking": 512,
    "bert-large-uncased-whole-word-masking-finetuned-squad": 512,
    "bert-large-cased-whole-word-masking-finetuned-squad": 512,
    "bert-base-cased-finetuned-mrpc": 512,
    "bert-base-german-dbmdz-cased": 512,
    "bert-base-german-dbmdz-uncased": 512,
    "bert-base-finnish-cased-v1": 512,
    "bert-base-finnish-uncased-v1": 512,
72
}
73

74
PRETRAINED_INIT_CONFIGURATION = {
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
    "bert-base-uncased": {"do_lower_case": True},
    "bert-large-uncased": {"do_lower_case": True},
    "bert-base-cased": {"do_lower_case": False},
    "bert-large-cased": {"do_lower_case": False},
    "bert-base-multilingual-uncased": {"do_lower_case": True},
    "bert-base-multilingual-cased": {"do_lower_case": False},
    "bert-base-chinese": {"do_lower_case": False},
    "bert-base-german-cased": {"do_lower_case": False},
    "bert-large-uncased-whole-word-masking": {"do_lower_case": True},
    "bert-large-cased-whole-word-masking": {"do_lower_case": False},
    "bert-large-uncased-whole-word-masking-finetuned-squad": {"do_lower_case": True},
    "bert-large-cased-whole-word-masking-finetuned-squad": {"do_lower_case": False},
    "bert-base-cased-finetuned-mrpc": {"do_lower_case": False},
    "bert-base-german-dbmdz-cased": {"do_lower_case": False},
    "bert-base-german-dbmdz-uncased": {"do_lower_case": True},
    "bert-base-finnish-cased-v1": {"do_lower_case": False},
    "bert-base-finnish-uncased-v1": {"do_lower_case": True},
92
93
94
}


95
96
97
def load_vocab(vocab_file):
    """Loads a vocabulary file into a dictionary."""
    vocab = collections.OrderedDict()
thomwolf's avatar
thomwolf committed
98
    with open(vocab_file, "r", encoding="utf-8") as reader:
99
        tokens = reader.readlines()
thomwolf's avatar
thomwolf committed
100
    for index, token in enumerate(tokens):
101
        token = token.rstrip("\n")
thomwolf's avatar
thomwolf committed
102
        vocab[token] = index
103
104
105
106
    return vocab


def whitespace_tokenize(text):
Yongbo Wang's avatar
typo  
Yongbo Wang committed
107
    """Runs basic whitespace cleaning and splitting on a piece of text."""
108
109
110
111
112
113
114
    text = text.strip()
    if not text:
        return []
    tokens = text.split()
    return tokens


115
class BertTokenizer(PreTrainedTokenizer):
116
117
    r"""
    Constructs a BertTokenizer.
118
    :class:`~transformers.BertTokenizer` runs end-to-end tokenization: punctuation splitting + wordpiece
119
120
121

    Args:
        vocab_file: Path to a one-wordpiece-per-line vocabulary file
Julien Chaumond's avatar
Julien Chaumond committed
122
        do_lower_case: Whether to lower case the input. Only has an effect when do_basic_tokenize=True
123
124
125
126
        do_basic_tokenize: Whether to do basic tokenization before wordpiece.
        max_len: An artificial maximum length to truncate tokenized sequences to; Effective maximum length is always the
            minimum of this value (if specified) and the underlying BERT model's sequence length.
        never_split: List of tokens which will never be split during tokenization. Only has an effect when
Julien Chaumond's avatar
Julien Chaumond committed
127
            do_basic_tokenize=True
128
    """
129

130
131
    vocab_files_names = VOCAB_FILES_NAMES
    pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
132
    pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION
133
    max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
134

135
136
137
138
139
140
141
142
143
144
145
146
147
148
    def __init__(
        self,
        vocab_file,
        do_lower_case=True,
        do_basic_tokenize=True,
        never_split=None,
        unk_token="[UNK]",
        sep_token="[SEP]",
        pad_token="[PAD]",
        cls_token="[CLS]",
        mask_token="[MASK]",
        tokenize_chinese_chars=True,
        **kwargs
    ):
149
150
151
        """Constructs a BertTokenizer.

        Args:
152
153
154
155
156
157
158
159
160
161
162
            **vocab_file**: Path to a one-wordpiece-per-line vocabulary file
            **do_lower_case**: (`optional`) boolean (default True)
                Whether to lower case the input
                Only has an effect when do_basic_tokenize=True
            **do_basic_tokenize**: (`optional`) boolean (default True)
                Whether to do basic tokenization before wordpiece.
            **never_split**: (`optional`) list of string
                List of tokens which will never be split during tokenization.
                Only has an effect when do_basic_tokenize=True
            **tokenize_chinese_chars**: (`optional`) boolean (default True)
                Whether to tokenize Chinese characters.
thomwolf's avatar
typos  
thomwolf committed
163
                This should likely be deactivated for Japanese:
164
                see: https://github.com/huggingface/pytorch-pretrained-BERT/issues/328
165
        """
Julien Chaumond's avatar
Julien Chaumond committed
166
        super().__init__(
167
168
169
170
171
            unk_token=unk_token,
            sep_token=sep_token,
            pad_token=pad_token,
            cls_token=cls_token,
            mask_token=mask_token,
172
            **kwargs,
173
        )
174
175
176
        self.max_len_single_sentence = self.max_len - 2  # take into account special tokens
        self.max_len_sentences_pair = self.max_len - 3  # take into account special tokens

thomwolf's avatar
thomwolf committed
177
178
179
        if not os.path.isfile(vocab_file):
            raise ValueError(
                "Can't find a vocabulary file at path '{}'. To load the vocabulary from a Google pretrained "
180
181
                "model use `tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`".format(vocab_file)
            )
182
        self.vocab = load_vocab(vocab_file)
183
        self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()])
184
185
        self.do_basic_tokenize = do_basic_tokenize
        if do_basic_tokenize:
186
187
188
            self.basic_tokenizer = BasicTokenizer(
                do_lower_case=do_lower_case, never_split=never_split, tokenize_chinese_chars=tokenize_chinese_chars
            )
189
        self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=self.unk_token)
190
191

    @property
192
193
    def vocab_size(self):
        return len(self.vocab)
194

195
    def _tokenize(self, text):
thomwolf's avatar
thomwolf committed
196
        split_tokens = []
197
        if self.do_basic_tokenize:
198
            for token in self.basic_tokenizer.tokenize(text, never_split=self.all_special_tokens):
thomwolf's avatar
thomwolf committed
199
200
                for sub_token in self.wordpiece_tokenizer.tokenize(token):
                    split_tokens.append(sub_token)
201
        else:
thomwolf's avatar
thomwolf committed
202
            split_tokens = self.wordpiece_tokenizer.tokenize(text)
203
204
        return split_tokens

205
    def _convert_token_to_id(self, token):
Aymeric Augustin's avatar
Aymeric Augustin committed
206
        """ Converts a token (str) in an id using the vocab. """
207
208
209
        return self.vocab.get(token, self.vocab.get(self.unk_token))

    def _convert_id_to_token(self, index):
Aymeric Augustin's avatar
Aymeric Augustin committed
210
        """Converts an index (integer) in a token (str) using the vocab."""
211
212
        return self.ids_to_tokens.get(index, self.unk_token)

213
214
    def convert_tokens_to_string(self, tokens):
        """ Converts a sequence of tokens (string) in a single string. """
215
        out_string = " ".join(tokens).replace(" ##", "").strip()
216
217
        return out_string

218
    def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
219
        """
220
221
222
223
224
        Build model inputs from a sequence or a pair of sequence for sequence classification tasks
        by concatenating and adding special tokens.
        A BERT sequence has the following format:
            single sequence: [CLS] X [SEP]
            pair of sequences: [CLS] A [SEP] B [SEP]
225
        """
226
227
        if token_ids_1 is None:
            return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
228
        cls = [self.cls_token_id]
229
        sep = [self.sep_token_id]
230
        return cls + token_ids_0 + sep + token_ids_1 + sep
231

232
    def get_special_tokens_mask(self, token_ids_0, token_ids_1=None, already_has_special_tokens=False):
LysandreJik's avatar
LysandreJik committed
233
234
235
236
237
238
239
        """
        Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
        special tokens using the tokenizer ``prepare_for_model`` or ``encode_plus`` methods.

        Args:
            token_ids_0: list of ids (must not contain special tokens)
            token_ids_1: Optional list of ids (must not contain special tokens), necessary when fetching sequence ids
240
241
242
                for sequence pairs
            already_has_special_tokens: (default False) Set to True if the token list is already formated with
                special tokens for the model
LysandreJik's avatar
LysandreJik committed
243
244

        Returns:
Lysandre's avatar
Lysandre committed
245
            A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
LysandreJik's avatar
LysandreJik committed
246
        """
247

248
249
        if already_has_special_tokens:
            if token_ids_1 is not None:
250
251
252
253
                raise ValueError(
                    "You should not supply a second sequence if the provided sequence of "
                    "ids is already formated with special tokens for the model."
                )
254
            return list(map(lambda x: 1 if x in [self.sep_token_id, self.cls_token_id] else 0, token_ids_0))
255

256
257
258
        if token_ids_1 is not None:
            return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
        return [1] + ([0] * len(token_ids_0)) + [1]
LysandreJik's avatar
LysandreJik committed
259

260
    def create_token_type_ids_from_sequences(self, token_ids_0, token_ids_1=None):
261
262
263
264
265
        """
        Creates a mask from the two sequences passed to be used in a sequence-pair classification task.
        A BERT sequence pair mask has the following format:
        0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
        | first sequence    | second sequence
266
267

        if token_ids_1 is None, only returns the first portion of the mask (0's).
268
269
270
        """
        sep = [self.sep_token_id]
        cls = [self.cls_token_id]
271
272
        if token_ids_1 is None:
            return len(cls + token_ids_0 + sep) * [0]
thomwolf's avatar
thomwolf committed
273
        return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
274

275
    def save_vocabulary(self, vocab_path):
thomwolf's avatar
thomwolf committed
276
        """Save the tokenizer vocabulary to a directory or file."""
277
        index = 0
thomwolf's avatar
thomwolf committed
278
        if os.path.isdir(vocab_path):
279
            vocab_file = os.path.join(vocab_path, VOCAB_FILES_NAMES["vocab_file"])
thomwolf's avatar
thomwolf committed
280
281
        else:
            vocab_file = vocab_path
282
283
284
        with open(vocab_file, "w", encoding="utf-8") as writer:
            for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]):
                if index != token_index:
285
286
287
288
                    logger.warning(
                        "Saving vocabulary to {}: vocabulary indices are not consecutive."
                        " Please check that the vocabulary is not corrupted!".format(vocab_file)
                    )
289
                    index = token_index
290
                writer.write(token + "\n")
291
                index += 1
292
        return (vocab_file,)
293

294
295
296
297

class BasicTokenizer(object):
    """Runs basic tokenization (punctuation splitting, lower casing, etc.)."""

298
299
    def __init__(self, do_lower_case=True, never_split=None, tokenize_chinese_chars=True):
        """ Constructs a BasicTokenizer.
300
301

        Args:
302
303
304
305
306
307
308
            **do_lower_case**: Whether to lower case the input.
            **never_split**: (`optional`) list of str
                Kept for backward compatibility purposes.
                Now implemented directly at the base class level (see :func:`PreTrainedTokenizer.tokenize`)
                List of token not to split.
            **tokenize_chinese_chars**: (`optional`) boolean (default True)
                Whether to tokenize Chinese characters.
thomwolf's avatar
typos  
thomwolf committed
309
                This should likely be deactivated for Japanese:
310
                see: https://github.com/huggingface/pytorch-pretrained-BERT/issues/328
311
        """
312
313
        if never_split is None:
            never_split = []
314
        self.do_lower_case = do_lower_case
WrRan's avatar
WrRan committed
315
        self.never_split = never_split
316
        self.tokenize_chinese_chars = tokenize_chinese_chars
317

318
319
320
321
322
323
324
325
326
327
    def tokenize(self, text, never_split=None):
        """ Basic Tokenization of a piece of text.
            Split on "white spaces" only, for sub-word tokenization, see WordPieceTokenizer.

        Args:
            **never_split**: (`optional`) list of str
                Kept for backward compatibility purposes.
                Now implemented directly at the base class level (see :func:`PreTrainedTokenizer.tokenize`)
                List of token not to split.
        """
328
        never_split = self.never_split + (never_split if never_split is not None else [])
329
        text = self._clean_text(text)
330
331
332
333
334
335
        # This was added on November 1st, 2018 for the multilingual and Chinese
        # models. This is also applied to the English models now, but it doesn't
        # matter since the English models were not trained on any Chinese data
        # and generally don't have any Chinese data in them (there are Chinese
        # characters in the vocabulary because Wikipedia does have some Chinese
        # words in the English Wikipedia.).
336
        if self.tokenize_chinese_chars:
thomwolf's avatar
thomwolf committed
337
            text = self._tokenize_chinese_chars(text)
338
339
340
        orig_tokens = whitespace_tokenize(text)
        split_tokens = []
        for token in orig_tokens:
341
            if self.do_lower_case and token not in never_split:
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
                token = token.lower()
                token = self._run_strip_accents(token)
            split_tokens.extend(self._run_split_on_punc(token))

        output_tokens = whitespace_tokenize(" ".join(split_tokens))
        return output_tokens

    def _run_strip_accents(self, text):
        """Strips accents from a piece of text."""
        text = unicodedata.normalize("NFD", text)
        output = []
        for char in text:
            cat = unicodedata.category(char)
            if cat == "Mn":
                continue
            output.append(char)
        return "".join(output)

360
    def _run_split_on_punc(self, text, never_split=None):
361
        """Splits punctuation on a piece of text."""
362
        if never_split is not None and text in never_split:
WrRan's avatar
WrRan committed
363
            return [text]
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
        chars = list(text)
        i = 0
        start_new_word = True
        output = []
        while i < len(chars):
            char = chars[i]
            if _is_punctuation(char):
                output.append([char])
                start_new_word = True
            else:
                if start_new_word:
                    output.append([])
                start_new_word = False
                output[-1].append(char)
            i += 1

        return ["".join(x) for x in output]
381

382
383
384
385
386
387
388
389
390
391
392
393
    def _tokenize_chinese_chars(self, text):
        """Adds whitespace around any CJK character."""
        output = []
        for char in text:
            cp = ord(char)
            if self._is_chinese_char(cp):
                output.append(" ")
                output.append(char)
                output.append(" ")
            else:
                output.append(char)
        return "".join(output)
394

395
396
397
398
399
400
401
402
403
404
    def _is_chinese_char(self, cp):
        """Checks whether CP is the codepoint of a CJK character."""
        # This defines a "chinese character" as anything in the CJK Unicode block:
        #   https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
        #
        # Note that the CJK Unicode block is NOT all Japanese and Korean characters,
        # despite its name. The modern Korean Hangul alphabet is a different block,
        # as is Japanese Hiragana and Katakana. Those alphabets are used to write
        # space-separated words, so they are not treated specially and handled
        # like the all of the other languages.
405
406
407
408
409
410
411
412
413
414
        if (
            (cp >= 0x4E00 and cp <= 0x9FFF)
            or (cp >= 0x3400 and cp <= 0x4DBF)  #
            or (cp >= 0x20000 and cp <= 0x2A6DF)  #
            or (cp >= 0x2A700 and cp <= 0x2B73F)  #
            or (cp >= 0x2B740 and cp <= 0x2B81F)  #
            or (cp >= 0x2B820 and cp <= 0x2CEAF)  #
            or (cp >= 0xF900 and cp <= 0xFAFF)
            or (cp >= 0x2F800 and cp <= 0x2FA1F)  #
        ):  #
415
            return True
416

417
        return False
418

419
420
421
422
423
    def _clean_text(self, text):
        """Performs invalid character removal and whitespace cleanup on text."""
        output = []
        for char in text:
            cp = ord(char)
424
            if cp == 0 or cp == 0xFFFD or _is_control(char):
425
426
427
428
429
430
431
432
433
434
435
                continue
            if _is_whitespace(char):
                output.append(" ")
            else:
                output.append(char)
        return "".join(output)


class WordpieceTokenizer(object):
    """Runs WordPiece tokenization."""

436
    def __init__(self, vocab, unk_token, max_input_chars_per_word=100):
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
        self.vocab = vocab
        self.unk_token = unk_token
        self.max_input_chars_per_word = max_input_chars_per_word

    def tokenize(self, text):
        """Tokenizes a piece of text into its word pieces.

        This uses a greedy longest-match-first algorithm to perform tokenization
        using the given vocabulary.

        For example:
          input = "unaffable"
          output = ["un", "##aff", "##able"]

        Args:
          text: A single token or whitespace separated tokens. This should have
Julien Chaumond's avatar
Julien Chaumond committed
453
            already been passed through `BasicTokenizer`.
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523

        Returns:
          A list of wordpiece tokens.
        """

        output_tokens = []
        for token in whitespace_tokenize(text):
            chars = list(token)
            if len(chars) > self.max_input_chars_per_word:
                output_tokens.append(self.unk_token)
                continue

            is_bad = False
            start = 0
            sub_tokens = []
            while start < len(chars):
                end = len(chars)
                cur_substr = None
                while start < end:
                    substr = "".join(chars[start:end])
                    if start > 0:
                        substr = "##" + substr
                    if substr in self.vocab:
                        cur_substr = substr
                        break
                    end -= 1
                if cur_substr is None:
                    is_bad = True
                    break
                sub_tokens.append(cur_substr)
                start = end

            if is_bad:
                output_tokens.append(self.unk_token)
            else:
                output_tokens.extend(sub_tokens)
        return output_tokens


def _is_whitespace(char):
    """Checks whether `chars` is a whitespace character."""
    # \t, \n, and \r are technically contorl characters but we treat them
    # as whitespace since they are generally considered as such.
    if char == " " or char == "\t" or char == "\n" or char == "\r":
        return True
    cat = unicodedata.category(char)
    if cat == "Zs":
        return True
    return False


def _is_control(char):
    """Checks whether `chars` is a control character."""
    # These are technically control characters but we count them as whitespace
    # characters.
    if char == "\t" or char == "\n" or char == "\r":
        return False
    cat = unicodedata.category(char)
    if cat.startswith("C"):
        return True
    return False


def _is_punctuation(char):
    """Checks whether `chars` is a punctuation character."""
    cp = ord(char)
    # We treat all non-letter/number ASCII as punctuation.
    # Characters such as "^", "$", and "`" are not in the Unicode
    # Punctuation class but we treat them as punctuation anyways, for
    # consistency.
524
    if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126):
525
526
527
528
529
        return True
    cat = unicodedata.category(char)
    if cat.startswith("P"):
        return True
    return False
Anthony MOI's avatar
Anthony MOI committed
530

Anthony MOI's avatar
Anthony MOI committed
531

532
class BertTokenizerFast(PreTrainedTokenizerFast):
Anthony MOI's avatar
Anthony MOI committed
533
534
535
536
537
    vocab_files_names = VOCAB_FILES_NAMES
    pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
    pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION
    max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES

Anthony MOI's avatar
Anthony MOI committed
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
    def __init__(
        self,
        vocab_file,
        do_lower_case=True,
        do_basic_tokenize=True,
        never_split=None,
        unk_token="[UNK]",
        sep_token="[SEP]",
        pad_token="[PAD]",
        cls_token="[CLS]",
        mask_token="[MASK]",
        tokenize_chinese_chars=True,
        max_length=None,
        pad_to_max_length=False,
        stride=0,
        truncation_strategy="longest_first",
        add_special_tokens=True,
        **kwargs
    ):
Julien Chaumond's avatar
Julien Chaumond committed
557
        super().__init__(
558
559
560
561
562
            unk_token=unk_token,
            sep_token=sep_token,
            pad_token=pad_token,
            cls_token=cls_token,
            mask_token=mask_token,
563
            **kwargs,
564
        )
Anthony MOI's avatar
Anthony MOI committed
565

566
567
568
569
570
571
572
573
        self._tokenizer = tk.Tokenizer(tk.models.WordPiece.from_files(vocab_file, unk_token=unk_token))
        self._update_special_tokens()
        self._tokenizer.with_pre_tokenizer(
            tk.pre_tokenizers.BertPreTokenizer.new(
                do_basic_tokenize=do_basic_tokenize,
                do_lower_case=do_lower_case,
                tokenize_chinese_chars=tokenize_chinese_chars,
                never_split=never_split if never_split is not None else [],
Anthony MOI's avatar
Anthony MOI committed
574
            )
575
576
        )
        self._tokenizer.with_decoder(tk.decoders.WordPiece.new())
Anthony MOI's avatar
Anthony MOI committed
577

578
579
580
581
582
        if add_special_tokens:
            self._tokenizer.with_post_processor(
                tk.processors.BertProcessing.new(
                    (sep_token, self._tokenizer.token_to_id(sep_token)),
                    (cls_token, self._tokenizer.token_to_id(cls_token)),
Anthony MOI's avatar
Anthony MOI committed
583
                )
Anthony MOI's avatar
Anthony MOI committed
584
            )
585
        if max_length is not None:
Anthony MOI's avatar
Anthony MOI committed
586
            self._tokenizer.with_truncation(max_length, stride=stride, strategy=truncation_strategy)
587
        self._tokenizer.with_padding(
588
589
590
591
592
            max_length=max_length if pad_to_max_length else None,
            direction=self.padding_side,
            pad_id=self.pad_token_id,
            pad_type_id=self.pad_token_type_id,
            pad_token=self.pad_token,
593
594
        )
        self._decoder = tk.decoders.WordPiece.new()