test_modeling_tf_roberta.py 26.7 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
Sylvain Gugger's avatar
Sylvain Gugger committed
2
# Copyright 2020 The HuggingFace Team. All rights reserved.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16
17
18

import unittest

Aymeric Augustin's avatar
Aymeric Augustin committed
19
from transformers import RobertaConfig, is_tf_available
20
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
Aymeric Augustin's avatar
Aymeric Augustin committed
21

22
23
from ..test_configuration_common import ConfigTester
from ..test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
thomwolf's avatar
thomwolf committed
24
25
26
27


if is_tf_available():
    import numpy
28
29
    import tensorflow as tf

Sylvain Gugger's avatar
Sylvain Gugger committed
30
    from transformers.models.roberta.modeling_tf_roberta import (
31
        TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
32
        TFRobertaForCausalLM,
33
        TFRobertaForMaskedLM,
34
35
        TFRobertaForMultipleChoice,
        TFRobertaForQuestionAnswering,
36
37
        TFRobertaForSequenceClassification,
        TFRobertaForTokenClassification,
38
        TFRobertaModel,
39
    )
thomwolf's avatar
thomwolf committed
40
41


42
43
class TFRobertaModelTester:
    def __init__(
Lysandre's avatar
Lysandre committed
44
45
        self,
        parent,
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
    ):
        self.parent = parent
        self.batch_size = 13
        self.seq_length = 7
        self.is_training = True
        self.use_input_mask = True
        self.use_token_type_ids = True
        self.use_labels = True
        self.vocab_size = 99
        self.hidden_size = 32
        self.num_hidden_layers = 5
        self.num_attention_heads = 4
        self.intermediate_size = 37
        self.hidden_act = "gelu"
        self.hidden_dropout_prob = 0.1
        self.attention_probs_dropout_prob = 0.1
        self.max_position_embeddings = 512
        self.type_vocab_size = 16
        self.type_sequence_label_size = 2
        self.initializer_range = 0.02
        self.num_labels = 3
        self.num_choices = 4
        self.scope = None

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
            input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

        config = RobertaConfig(
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            type_vocab_size=self.type_vocab_size,
            initializer_range=self.initializer_range,
        )

        return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels

105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
    def prepare_config_and_inputs_for_decoder(self):
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = self.prepare_config_and_inputs()

        config.is_decoder = True
        encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size])
        encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)

        return (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
            encoder_hidden_states,
            encoder_attention_mask,
        )

132
    def create_and_check_model(
133
134
135
136
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = TFRobertaModel(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
137
        result = model(inputs)
138
139

        inputs = [input_ids, input_mask]
Sylvain Gugger's avatar
Sylvain Gugger committed
140
        result = model(inputs)
141

Sylvain Gugger's avatar
Sylvain Gugger committed
142
        result = model(input_ids)
143

144
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
145

146
    def create_and_check_causal_lm_base_model(
147
148
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
        config.is_decoder = True

        model = TFRobertaModel(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
        result = model(inputs)

        inputs = [input_ids, input_mask]
        result = model(inputs)

        result = model(input_ids)

        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))

    def create_and_check_model_as_decoder(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        encoder_hidden_states,
        encoder_attention_mask,
    ):
        config.add_cross_attention = True

        model = TFRobertaModel(config=config)
        inputs = {
            "input_ids": input_ids,
            "attention_mask": input_mask,
            "token_type_ids": token_type_ids,
            "encoder_hidden_states": encoder_hidden_states,
            "encoder_attention_mask": encoder_attention_mask,
        }
        result = model(inputs)

        inputs = [input_ids, input_mask]
        result = model(inputs, token_type_ids=token_type_ids, encoder_hidden_states=encoder_hidden_states)

        # Also check the case where encoder outputs are not passed
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)

        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))

    def create_and_check_causal_lm_model(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.is_decoder = True

199
        model = TFRobertaForCausalLM(config=config)
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
        inputs = {
            "input_ids": input_ids,
            "attention_mask": input_mask,
            "token_type_ids": token_type_ids,
        }
        prediction_scores = model(inputs)["logits"]
        self.parent.assertListEqual(
            list(prediction_scores.numpy().shape), [self.batch_size, self.seq_length, self.vocab_size]
        )

    def create_and_check_causal_lm_model_as_decoder(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        encoder_hidden_states,
        encoder_attention_mask,
    ):
        config.add_cross_attention = True

        model = TFRobertaForCausalLM(config=config)
        inputs = {
            "input_ids": input_ids,
            "attention_mask": input_mask,
            "token_type_ids": token_type_ids,
            "encoder_hidden_states": encoder_hidden_states,
            "encoder_attention_mask": encoder_attention_mask,
        }
        result = model(inputs)

        inputs = [input_ids, input_mask]
        result = model(inputs, token_type_ids=token_type_ids, encoder_hidden_states=encoder_hidden_states)

        prediction_scores = result["logits"]
        self.parent.assertListEqual(
            list(prediction_scores.numpy().shape), [self.batch_size, self.seq_length, self.vocab_size]
        )

    def create_and_check_causal_lm_model_past(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
    ):
        config.is_decoder = True

        model = TFRobertaForCausalLM(config=config)

        # special to `RobertaEmbeddings` in `Roberta`:
        #   - its `padding_idx` and its effect on `position_ids`
        #     (TFRobertaEmbeddings.create_position_ids_from_input_ids)
        #   - `1` here is `TFRobertaEmbeddings.padding_idx`
        input_ids = tf.where(input_ids == 1, 2, input_ids)

        # first forward pass
        outputs = model(input_ids, use_cache=True)
        outputs_use_cache_conf = model(input_ids)
        outputs_no_past = model(input_ids, use_cache=False)

        self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf))
        self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1)

        past_key_values = outputs.past_key_values

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)

        # append to next input_ids and attn_mask
        next_input_ids = tf.concat([input_ids, next_tokens], axis=-1)

        output_from_no_past = model(next_input_ids, output_hidden_states=True).hidden_states[0]
        output_from_past = model(
            next_tokens, past_key_values=past_key_values, output_hidden_states=True
        ).hidden_states[0]

        # select random slice
        random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1]))
        output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx]
        output_from_past_slice = output_from_past[:, 0, random_slice_idx]

        # test that outputs are equal for slice
        tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-6)

    def create_and_check_causal_lm_model_past_with_attn_mask(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
    ):
        config.is_decoder = True

        model = TFRobertaForCausalLM(config=config)

        # special to `RobertaEmbeddings` in `Roberta`:
        #   - its `padding_idx` and its effect on `position_ids`
        #     (TFRobertaEmbeddings.create_position_ids_from_input_ids)
        #   - `1` here is `TFRobertaEmbeddings.padding_idx`
        # avoid `padding_idx` in the past
        input_ids = tf.where(input_ids == 1, 2, input_ids)

        # create attention mask
        half_seq_length = self.seq_length // 2
        attn_mask_begin = tf.ones((self.batch_size, half_seq_length), dtype=tf.int32)
        attn_mask_end = tf.zeros((self.batch_size, self.seq_length - half_seq_length), dtype=tf.int32)
        attn_mask = tf.concat([attn_mask_begin, attn_mask_end], axis=1)

        # first forward pass
        outputs = model(input_ids, attention_mask=attn_mask, use_cache=True)

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)

        past_key_values = outputs.past_key_values

        # change a random masked slice from input_ids
        random_seq_idx_to_change = ids_tensor((1,), half_seq_length).numpy() + 1
        random_other_next_tokens = ids_tensor((self.batch_size, self.seq_length), config.vocab_size)
        vector_condition = tf.range(self.seq_length) == (self.seq_length - random_seq_idx_to_change)
        condition = tf.transpose(
            tf.broadcast_to(tf.expand_dims(vector_condition, -1), (self.seq_length, self.batch_size))
        )
        input_ids = tf.where(condition, random_other_next_tokens, input_ids)
        # avoid `padding_idx` in the past
        input_ids = tf.where(input_ids == 1, 2, input_ids)

        # append to next input_ids and
        next_input_ids = tf.concat([input_ids, next_tokens], axis=-1)
        attn_mask = tf.concat(
            [attn_mask, tf.ones((attn_mask.shape[0], 1), dtype=tf.int32)],
            axis=1,
        )

        output_from_no_past = model(
            next_input_ids,
            attention_mask=attn_mask,
            output_hidden_states=True,
        ).hidden_states[0]
        output_from_past = model(
            next_tokens, past_key_values=past_key_values, attention_mask=attn_mask, output_hidden_states=True
        ).hidden_states[0]

        # select random slice
        random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1]))
        output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx]
        output_from_past_slice = output_from_past[:, 0, random_slice_idx]

        # test that outputs are equal for slice
        tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-6)

    def create_and_check_causal_lm_model_past_large_inputs(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
    ):
        config.is_decoder = True
372

373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
        model = TFRobertaForCausalLM(config=config)

        # special to `RobertaEmbeddings` in `Roberta`:
        #   - its `padding_idx` and its effect on `position_ids`
        #     (TFRobertaEmbeddings.create_position_ids_from_input_ids)
        #   - `1` here is `TFRobertaEmbeddings.padding_idx`
        # avoid `padding_idx` in the past
        input_ids = tf.where(input_ids == 1, 2, input_ids)

        input_ids = input_ids[:1, :]
        input_mask = input_mask[:1, :]
        self.batch_size = 1

        # first forward pass
        outputs = model(input_ids, attention_mask=input_mask, use_cache=True)
        past_key_values = outputs.past_key_values

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
        next_attn_mask = ids_tensor((self.batch_size, 3), 2)

        # append to next input_ids and
        next_input_ids = tf.concat([input_ids, next_tokens], axis=-1)
        next_attention_mask = tf.concat([input_mask, next_attn_mask], axis=-1)

        output_from_no_past = model(
            next_input_ids,
            attention_mask=next_attention_mask,
            output_hidden_states=True,
        ).hidden_states[0]
        output_from_past = model(
            next_tokens,
            attention_mask=next_attention_mask,
            past_key_values=past_key_values,
            output_hidden_states=True,
        ).hidden_states[0]

        self.parent.assertEqual(next_tokens.shape[1], output_from_past.shape[1])

        # select random slice
        random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1]))
        output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx]
        output_from_past_slice = output_from_past[:, :, random_slice_idx]

        # test that outputs are equal for slice
        tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-3)

    def create_and_check_decoder_model_past_large_inputs(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        encoder_hidden_states,
        encoder_attention_mask,
    ):
        config.add_cross_attention = True

        model = TFRobertaForCausalLM(config=config)

        # special to `RobertaEmbeddings` in `Roberta`:
        #   - its `padding_idx` and its effect on `position_ids`
        #     (TFRobertaEmbeddings.create_position_ids_from_input_ids)
        #   - `1` here is `TFRobertaEmbeddings.padding_idx`
        # avoid `padding_idx` in the past
        input_ids = tf.where(input_ids == 1, 2, input_ids)

        input_ids = input_ids[:1, :]
        input_mask = input_mask[:1, :]
        encoder_hidden_states = encoder_hidden_states[:1, :, :]
        encoder_attention_mask = encoder_attention_mask[:1, :]
        self.batch_size = 1

        # first forward pass
        outputs = model(
            input_ids,
            attention_mask=input_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            use_cache=True,
        )
        past_key_values = outputs.past_key_values

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
        next_attn_mask = ids_tensor((self.batch_size, 3), 2)

        # append to next input_ids and
        next_input_ids = tf.concat([input_ids, next_tokens], axis=-1)
        next_attention_mask = tf.concat([input_mask, next_attn_mask], axis=-1)

        output_from_no_past = model(
            next_input_ids,
            attention_mask=next_attention_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            output_hidden_states=True,
        ).hidden_states[0]
        output_from_past = model(
            next_tokens,
            attention_mask=next_attention_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            past_key_values=past_key_values,
            output_hidden_states=True,
        ).hidden_states[0]

        self.parent.assertEqual(next_tokens.shape[1], output_from_past.shape[1])

        # select random slice
        random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1]))
        output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx]
        output_from_past_slice = output_from_past[:, :, random_slice_idx]

        # test that outputs are equal for slice
        tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-3)

    def create_and_check_for_masked_lm(
494
495
496
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = TFRobertaForMaskedLM(config=config)
Sylvain Gugger's avatar
Sylvain Gugger committed
497
        result = model([input_ids, input_mask, token_type_ids])
498
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
499

500
    def create_and_check_for_token_classification(
501
502
503
504
505
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_labels = self.num_labels
        model = TFRobertaForTokenClassification(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
506
        result = model(inputs)
507
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
508

509
    def create_and_check_for_question_answering(
510
511
512
513
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = TFRobertaForQuestionAnswering(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
514
        result = model(inputs)
515
516
        self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
        self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
517

518
    def create_and_check_for_multiple_choice(
519
520
521
522
523
524
525
526
527
528
529
530
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_choices = self.num_choices
        model = TFRobertaForMultipleChoice(config=config)
        multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1))
        multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1))
        multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1))
        inputs = {
            "input_ids": multiple_choice_inputs_ids,
            "attention_mask": multiple_choice_input_mask,
            "token_type_ids": multiple_choice_token_type_ids,
        }
Sylvain Gugger's avatar
Sylvain Gugger committed
531
        result = model(inputs)
532
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
533

534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs
        inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
        return config, inputs_dict


549
@require_tf
550
class TFRobertaModelTest(TFModelTesterMixin, unittest.TestCase):
thomwolf's avatar
thomwolf committed
551

552
    all_model_classes = (
553
554
        (
            TFRobertaModel,
555
            TFRobertaForCausalLM,
556
557
558
559
560
561
562
            TFRobertaForMaskedLM,
            TFRobertaForSequenceClassification,
            TFRobertaForTokenClassification,
            TFRobertaForQuestionAnswering,
        )
        if is_tf_available()
        else ()
563
    )
564
    test_head_masking = False
565
    test_onnx = False
thomwolf's avatar
thomwolf committed
566
567

    def setUp(self):
568
        self.model_tester = TFRobertaModelTester(self)
thomwolf's avatar
thomwolf committed
569
570
571
572
573
        self.config_tester = ConfigTester(self, config_class=RobertaConfig, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

574
575
    def test_model(self):
        """Test the base model"""
thomwolf's avatar
thomwolf committed
576
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
        self.model_tester.create_and_check_model(*config_and_inputs)

    def test_causal_lm_base_model(self):
        """Test the base model of the causal LM model

        is_deocder=True, no cross_attention, no encoder outputs
        """
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_causal_lm_base_model(*config_and_inputs)

    def test_model_as_decoder(self):
        """Test the base model as a decoder (of an encoder-decoder architecture)

        is_deocder=True + cross_attention + pass encoder outputs
        """
        config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
        self.model_tester.create_and_check_model_as_decoder(*config_and_inputs)
thomwolf's avatar
thomwolf committed
594
595
596

    def test_for_masked_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
597
        self.model_tester.create_and_check_for_masked_lm(*config_and_inputs)
thomwolf's avatar
thomwolf committed
598

599
    def test_for_causal_lm(self):
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
        """Test the causal LM model"""
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_causal_lm_model(*config_and_inputs)

    def test_causal_lm_model_as_decoder(self):
        """Test the causal LM model as a decoder"""
        config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
        self.model_tester.create_and_check_causal_lm_model_as_decoder(*config_and_inputs)

    def test_causal_lm_model_past(self):
        """Test causal LM model with `past_key_values`"""
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_causal_lm_model_past(*config_and_inputs)

    def test_causal_lm_model_past_with_attn_mask(self):
        """Test the causal LM model with `past_key_values` and `attention_mask`"""
616
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
617
618
619
620
621
622
623
624
625
626
627
        self.model_tester.create_and_check_causal_lm_model_past_with_attn_mask(*config_and_inputs)

    def test_causal_lm_model_past_with_large_inputs(self):
        """Test the causal LM model with `past_key_values` and a longer decoder sequence length"""
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_causal_lm_model_past_large_inputs(*config_and_inputs)

    def test_decoder_model_past_with_large_inputs(self):
        """Similar to `test_causal_lm_model_past_with_large_inputs` but with cross-attention"""
        config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
        self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs)
628

Lysandre's avatar
Lysandre committed
629
630
    def test_for_token_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
631
        self.model_tester.create_and_check_for_token_classification(*config_and_inputs)
Lysandre's avatar
Lysandre committed
632

633
634
    def test_for_question_answering(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
635
        self.model_tester.create_and_check_for_question_answering(*config_and_inputs)
636
637
638

    def test_for_multiple_choice(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
639
        self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs)
640

641
    @slow
thomwolf's avatar
thomwolf committed
642
    def test_model_from_pretrained(self):
643
        for model_name in TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
644
            model = TFRobertaModel.from_pretrained(model_name)
thomwolf's avatar
thomwolf committed
645
646
647
            self.assertIsNotNone(model)


648
@require_tf
649
650
@require_sentencepiece
@require_tokenizers
thomwolf's avatar
thomwolf committed
651
class TFRobertaModelIntegrationTest(unittest.TestCase):
652
    @slow
thomwolf's avatar
thomwolf committed
653
    def test_inference_masked_lm(self):
654
        model = TFRobertaForMaskedLM.from_pretrained("roberta-base")
655

656
        input_ids = tf.constant([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]])
thomwolf's avatar
thomwolf committed
657
658
        output = model(input_ids)[0]
        expected_shape = [1, 11, 50265]
659
        self.assertEqual(list(output.numpy().shape), expected_shape)
thomwolf's avatar
thomwolf committed
660
661
        # compare the actual values for a slice.
        expected_slice = tf.constant(
662
            [[[33.8802, -4.3103, 22.7761], [4.6539, -2.8098, 13.6253], [1.8228, -3.6898, 8.8600]]]
thomwolf's avatar
thomwolf committed
663
        )
664
        self.assertTrue(numpy.allclose(output[:, :3, :3].numpy(), expected_slice.numpy(), atol=1e-4))
thomwolf's avatar
thomwolf committed
665

666
    @slow
thomwolf's avatar
thomwolf committed
667
    def test_inference_no_head(self):
668
        model = TFRobertaModel.from_pretrained("roberta-base")
669

670
        input_ids = tf.constant([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]])
thomwolf's avatar
thomwolf committed
671
672
673
        output = model(input_ids)[0]
        # compare the actual values for a slice.
        expected_slice = tf.constant(
674
            [[[-0.0231, 0.0782, 0.0074], [-0.1854, 0.0540, -0.0175], [0.0548, 0.0799, 0.1687]]]
thomwolf's avatar
thomwolf committed
675
        )
676
        self.assertTrue(numpy.allclose(output[:, :3, :3].numpy(), expected_slice.numpy(), atol=1e-4))
thomwolf's avatar
thomwolf committed
677

678
    @slow
thomwolf's avatar
thomwolf committed
679
    def test_inference_classification_head(self):
680
        model = TFRobertaForSequenceClassification.from_pretrained("roberta-large-mnli")
681

682
        input_ids = tf.constant([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]])
thomwolf's avatar
thomwolf committed
683
684
        output = model(input_ids)[0]
        expected_shape = [1, 3]
685
686
        self.assertEqual(list(output.numpy().shape), expected_shape)
        expected_tensor = tf.constant([[-0.9469, 0.3913, 0.5118]])
687
        self.assertTrue(numpy.allclose(output.numpy(), expected_tensor.numpy(), atol=1e-4))