test_tokenization_barthez.py 2.81 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
# coding=utf-8
# Copyright 2020 Ecole Polytechnique and HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch

from .test_tokenization_common import TokenizerTesterMixin


@require_tokenizers
@require_sentencepiece
class BarthezTokenizationTest(TokenizerTesterMixin, unittest.TestCase):

    tokenizer_class = BarthezTokenizer
    rust_tokenizer_class = BarthezTokenizerFast
    test_rust_tokenizer = True

    def setUp(self):
        super().setUp()

        tokenizer = BarthezTokenizer.from_pretrained("moussaKam/mbarthez")
        tokenizer.save_pretrained(self.tmpdirname)
        self.tokenizer = tokenizer

    @require_torch
    def test_prepare_seq2seq_batch(self):
        src_text = ["A long paragraph for summarization.", "Another paragraph for summarization."]
        tgt_text = [
            "Summary of the text.",
            "Another summary.",
        ]
        expected_src_tokens = [0, 57, 3018, 70307, 91, 2]

        batch = self.tokenizer.prepare_seq2seq_batch(
            src_text, tgt_texts=tgt_text, max_length=len(expected_src_tokens), return_tensors="pt"
        )
        self.assertIsInstance(batch, BatchEncoding)

        self.assertEqual((2, 6), batch.input_ids.shape)
        self.assertEqual((2, 6), batch.attention_mask.shape)
        result = batch.input_ids.tolist()[0]
        self.assertListEqual(expected_src_tokens, result)

    def test_rust_and_python_full_tokenizers(self):
        if not self.test_rust_tokenizer:
            return

        tokenizer = self.get_tokenizer()
        rust_tokenizer = self.get_rust_tokenizer()

        sequence = "I was born in 92000, and this is fals茅."

        tokens = tokenizer.tokenize(sequence)
        rust_tokens = rust_tokenizer.tokenize(sequence)
        self.assertListEqual(tokens, rust_tokens)

        ids = tokenizer.encode(sequence, add_special_tokens=False)
        rust_ids = rust_tokenizer.encode(sequence, add_special_tokens=False)
        self.assertListEqual(ids, rust_ids)

        rust_tokenizer = self.get_rust_tokenizer()
        ids = tokenizer.encode(sequence)
        rust_ids = rust_tokenizer.encode(sequence)
        self.assertListEqual(ids, rust_ids)