run_translation.py 31.7 KB
Newer Older
Matt's avatar
Matt committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#!/usr/bin/env python
# coding=utf-8
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for translation.
"""
# You can also adapt this script on your own sequence to sequence task. Pointers for this are left as comments.

Matt's avatar
Matt committed
21
import json
Matt's avatar
Matt committed
22
23
24
import logging
import os
import sys
25
import warnings
Matt's avatar
Matt committed
26
27
28
29
from dataclasses import dataclass, field
from typing import Optional

import datasets
30
import evaluate
Matt's avatar
Matt committed
31
32
import numpy as np
import tensorflow as tf
33
from datasets import load_dataset
Matt's avatar
Matt committed
34
35
36
37
38

import transformers
from transformers import (
    AutoConfig,
    AutoTokenizer,
Matt's avatar
Matt committed
39
    DataCollatorForSeq2Seq,
Matt's avatar
Matt committed
40
    HfArgumentParser,
Matt's avatar
Matt committed
41
    KerasMetricCallback,
Matt's avatar
Matt committed
42
43
44
45
46
    M2M100Tokenizer,
    MBart50Tokenizer,
    MBart50TokenizerFast,
    MBartTokenizer,
    MBartTokenizerFast,
Matt's avatar
Matt committed
47
    PushToHubCallback,
Matt's avatar
Matt committed
48
49
50
51
52
53
    TFAutoModelForSeq2SeqLM,
    TFTrainingArguments,
    create_optimizer,
    set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
54
from transformers.utils import check_min_version, send_example_telemetry
Matt's avatar
Matt committed
55
56
57
58
59
from transformers.utils.versions import require_version


# region Dependencies and constants
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
Arthur Zucker's avatar
Arthur Zucker committed
60
check_min_version("4.39.0.dev0")
Matt's avatar
Matt committed
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/summarization/requirements.txt")

logger = logging.getLogger(__name__)
MULTILINGUAL_TOKENIZERS = [MBartTokenizer, MBartTokenizerFast, MBart50Tokenizer, MBart50TokenizerFast, M2M100Tokenizer]
# endregion


# region Arguments
@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """

    model_name_or_path: str = field(
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
    )
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
    )
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
        default=None,
        metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"},
    )
    use_fast_tokenizer: bool = field(
        default=True,
        metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
    )
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
97
98
    token: str = field(
        default=None,
Matt's avatar
Matt committed
99
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
100
            "help": (
101
102
                "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
                "generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
Sylvain Gugger's avatar
Sylvain Gugger committed
103
            )
Matt's avatar
Matt committed
104
105
        },
    )
106
107
108
    use_auth_token: bool = field(
        default=None,
        metadata={
109
            "help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead."
110
111
        },
    )
112
113
114
115
    trust_remote_code: bool = field(
        default=False,
        metadata={
            "help": (
116
                "Whether or not to allow for custom models defined on the Hub in their own modeling files. This option "
117
                "should only be set to `True` for repositories you trust and in which you have read the code, as it will "
118
119
120
121
                "execute code present on the Hub on your local machine."
            )
        },
    )
Matt's avatar
Matt committed
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143


@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """

    source_lang: str = field(default=None, metadata={"help": "Source language id for translation."})
    target_lang: str = field(default=None, metadata={"help": "Target language id for translation."})
    dataset_name: Optional[str] = field(
        default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
    )
    train_file: Optional[str] = field(
        default=None, metadata={"help": "The input training data file (a jsonlines or csv file)."}
    )
    validation_file: Optional[str] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
144
145
146
            "help": (
                "An optional input evaluation data file to evaluate the metrics (rouge) on (a jsonlines or csv file)."
            )
Matt's avatar
Matt committed
147
148
149
150
151
        },
    )
    test_file: Optional[str] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
152
            "help": "An optional input test data file to evaluate the metrics (rouge) on (a jsonlines or csv file)."
Matt's avatar
Matt committed
153
154
155
156
157
158
159
160
161
162
163
164
        },
    )
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
    )
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )
    max_source_length: Optional[int] = field(
        default=1024,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
165
166
167
168
            "help": (
                "The maximum total input sequence length after tokenization. Sequences longer "
                "than this will be truncated, sequences shorter will be padded."
            )
Matt's avatar
Matt committed
169
170
171
172
173
        },
    )
    max_target_length: Optional[int] = field(
        default=128,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
174
175
176
177
            "help": (
                "The maximum total sequence length for target text after tokenization. Sequences longer "
                "than this will be truncated, sequences shorter will be padded."
            )
Matt's avatar
Matt committed
178
179
180
181
182
        },
    )
    val_max_target_length: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
183
184
            "help": (
                "The maximum total sequence length for validation target text after tokenization. Sequences longer "
185
                "than this will be truncated, sequences shorter will be padded. Will default to `max_target_length`. "
Sylvain Gugger's avatar
Sylvain Gugger committed
186
187
188
                "This argument is also used to override the ``max_length`` param of ``model.generate``, which is used "
                "during ``evaluate`` and ``predict``."
            )
Matt's avatar
Matt committed
189
190
191
192
193
        },
    )
    pad_to_max_length: bool = field(
        default=False,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
194
195
196
197
198
            "help": (
                "Whether to pad all samples to model maximum sentence length. "
                "If False, will pad the samples dynamically when batching to the maximum length in the batch. More "
                "efficient on GPU but very bad for TPU."
            )
Matt's avatar
Matt committed
199
200
201
202
203
        },
    )
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
204
205
206
207
            "help": (
                "For debugging purposes or quicker training, truncate the number of training examples to this "
                "value if set."
            )
Matt's avatar
Matt committed
208
209
210
211
212
        },
    )
    max_eval_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
213
214
215
216
            "help": (
                "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
                "value if set."
            )
Matt's avatar
Matt committed
217
218
219
220
221
        },
    )
    max_predict_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
222
223
224
225
            "help": (
                "For debugging purposes or quicker training, truncate the number of prediction examples to this "
                "value if set."
            )
Matt's avatar
Matt committed
226
227
228
        },
    )
    num_beams: Optional[int] = field(
229
        default=1,
Matt's avatar
Matt committed
230
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
231
232
233
234
            "help": (
                "Number of beams to use for evaluation. This argument will be passed to ``model.generate``, "
                "which is used during ``evaluate`` and ``predict``."
            )
Matt's avatar
Matt committed
235
236
237
238
239
240
241
242
243
244
245
        },
    )
    ignore_pad_token_for_loss: bool = field(
        default=True,
        metadata={
            "help": "Whether to ignore the tokens corresponding to padded labels in the loss computation or not."
        },
    )
    source_prefix: Optional[str] = field(
        default=None, metadata={"help": "A prefix to add before every source text (useful for T5 models)."}
    )
Matt's avatar
Matt committed
246
247
248
249
250
251
252
253
254
255
    forced_bos_token: Optional[str] = field(
        default=None,
        metadata={
            "help": (
                "The token to force as the first generated token after the :obj:`decoder_start_token_id`.Useful for"
                " multilingual models like :doc:`mBART <../model_doc/mbart>` where the first generated token needs to"
                " be the target language token.(Usually it is the target language token)"
            )
        },
    )
Matt's avatar
Matt committed
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286

    def __post_init__(self):
        if self.dataset_name is None and self.train_file is None and self.validation_file is None:
            raise ValueError("Need either a dataset name or a training/validation file.")
        else:
            if self.train_file is not None:
                extension = self.train_file.split(".")[-1]
                assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
            if self.validation_file is not None:
                extension = self.validation_file.split(".")[-1]
                assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
        if self.val_max_target_length is None:
            self.val_max_target_length = self.max_target_length


# endregion


def main():
    # region Argument parsing
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()
287

288
    if model_args.use_auth_token is not None:
289
290
291
292
        warnings.warn(
            "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.",
            FutureWarning,
        )
293
294
295
296
        if model_args.token is not None:
            raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
        model_args.token = model_args.use_auth_token

297
298
299
    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    send_example_telemetry("run_translation", model_args, data_args, framework="tensorflow")
Matt's avatar
Matt committed
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
    # endregion

    # region Logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )
    logger.setLevel(logging.INFO)
    datasets.utils.logging.set_verbosity(logging.INFO)
    transformers.utils.logging.set_verbosity(logging.INFO)

    # Log on each process the small summary:
    logger.info(f"Training/evaluation parameters {training_args}")
    # endregion

    # region Detecting last checkpoint
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )
    # endregion

    # Set seed before initializing model.
    set_seed(training_args.seed)

    # region Load datasets
    # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
    # For CSV/JSON files this script will use the first column for the full texts and the second column for the
    # summaries (unless you specify column names for this with the `text_column` and `summary_column` arguments).
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
        raw_datasets = load_dataset(
348
349
350
            data_args.dataset_name,
            data_args.dataset_config_name,
            cache_dir=model_args.cache_dir,
351
            token=model_args.token,
Matt's avatar
Matt committed
352
353
354
355
356
357
358
359
360
        )
    else:
        data_files = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
            extension = data_args.train_file.split(".")[-1]
        if data_args.validation_file is not None:
            data_files["validation"] = data_args.validation_file
            extension = data_args.validation_file.split(".")[-1]
361
362
363
364
        raw_datasets = load_dataset(
            extension,
            data_files=data_files,
            cache_dir=model_args.cache_dir,
365
            token=model_args.token,
366
        )
Matt's avatar
Matt committed
367
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
368
    # https://huggingface.co/docs/datasets/loading
Matt's avatar
Matt committed
369
370
371
372
373
374
375
376
377
378
379
380
    # endregion

    # region Load model config and tokenizer
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.

    config = AutoConfig.from_pretrained(
        model_args.config_name if model_args.config_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
381
        token=model_args.token,
382
        trust_remote_code=model_args.trust_remote_code,
Matt's avatar
Matt committed
383
384
385
386
387
388
    )
    tokenizer = AutoTokenizer.from_pretrained(
        model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        use_fast=model_args.use_fast_tokenizer,
        revision=model_args.model_revision,
389
        token=model_args.token,
390
        trust_remote_code=model_args.trust_remote_code,
Matt's avatar
Matt committed
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
    )

    prefix = data_args.source_prefix if data_args.source_prefix is not None else ""
    # endregion

    # region Dataset preprocessing
    # We need to tokenize inputs and targets.
    if training_args.do_train:
        column_names = raw_datasets["train"].column_names
    elif training_args.do_eval:
        column_names = raw_datasets["validation"].column_names
    else:
        logger.info("There is nothing to do. Please pass `do_train`, and/or `do_eval`.")
        return

    column_names = raw_datasets["train"].column_names

    # For translation we set the codes of our source and target languages (only useful for mBART, the others will
    # ignore those attributes).
    if isinstance(tokenizer, tuple(MULTILINGUAL_TOKENIZERS)):
        assert data_args.target_lang is not None and data_args.source_lang is not None, (
            f"{tokenizer.__class__.__name__} is a multilingual tokenizer which requires --source_lang and "
            "--target_lang arguments."
        )
        tokenizer.src_lang = data_args.source_lang
        tokenizer.tgt_lang = data_args.target_lang
        forced_bos_token_id = (
            tokenizer.lang_code_to_id[data_args.forced_bos_token] if data_args.forced_bos_token is not None else None
        )

    # Get the language codes for input/target.
    source_lang = data_args.source_lang.split("_")[0]
    target_lang = data_args.target_lang.split("_")[0]

    padding = "max_length" if data_args.pad_to_max_length else False

    # Temporarily set max_target_length for training.
    max_target_length = data_args.max_target_length
    padding = "max_length" if data_args.pad_to_max_length else False

    def preprocess_function(examples):
        inputs = [ex[source_lang] for ex in examples["translation"]]
        targets = [ex[target_lang] for ex in examples["translation"]]
        inputs = [prefix + inp for inp in inputs]
        model_inputs = tokenizer(inputs, max_length=data_args.max_source_length, padding=padding, truncation=True)

437
438
        # Tokenize targets with the `text_target` keyword argument
        labels = tokenizer(text_target=targets, max_length=max_target_length, padding=padding, truncation=True)
Matt's avatar
Matt committed
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454

        # If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to ignore
        # padding in the loss.
        if padding == "max_length" and data_args.ignore_pad_token_for_loss:
            labels["input_ids"] = [
                [(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels["input_ids"]
            ]

        model_inputs["labels"] = labels["input_ids"]
        return model_inputs

    if training_args.do_train:
        if "train" not in raw_datasets:
            raise ValueError("--do_train requires a train dataset")
        train_dataset = raw_datasets["train"]
        if data_args.max_train_samples is not None:
455
456
            max_train_samples = min(len(train_dataset), data_args.max_train_samples)
            train_dataset = train_dataset.select(range(max_train_samples))
457
458
459
460
461
462
463
464
        train_dataset = train_dataset.map(
            preprocess_function,
            batched=True,
            num_proc=data_args.preprocessing_num_workers,
            remove_columns=column_names,
            load_from_cache_file=not data_args.overwrite_cache,
            desc="Running tokenizer on train dataset",
        )
Matt's avatar
Matt committed
465
466
467
468
469
470
471
472
473
    else:
        train_dataset = None

    if training_args.do_eval:
        max_target_length = data_args.val_max_target_length
        if "validation" not in raw_datasets:
            raise ValueError("--do_eval requires a validation dataset")
        eval_dataset = raw_datasets["validation"]
        if data_args.max_eval_samples is not None:
474
475
            max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
            eval_dataset = eval_dataset.select(range(max_eval_samples))
476
477
478
479
480
481
482
483
        eval_dataset = eval_dataset.map(
            preprocess_function,
            batched=True,
            num_proc=data_args.preprocessing_num_workers,
            remove_columns=column_names,
            load_from_cache_file=not data_args.overwrite_cache,
            desc="Running tokenizer on validation dataset",
        )
Matt's avatar
Matt committed
484
485
486
487
488
489
490
491
492
493
494
    else:
        eval_dataset = None
    # endregion

    with training_args.strategy.scope():
        # region Prepare model
        model = TFAutoModelForSeq2SeqLM.from_pretrained(
            model_args.model_name_or_path,
            config=config,
            cache_dir=model_args.cache_dir,
            revision=model_args.model_revision,
495
            token=model_args.token,
496
            trust_remote_code=model_args.trust_remote_code,
Matt's avatar
Matt committed
497
498
        )

499
500
        # We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch
        # on a small vocab and want a smaller embedding size, remove this test.
501
502
503
504
505
506
507
508
509
        embeddings = model.get_input_embeddings()

        # Matt: This is a temporary workaround as we transition our models to exclusively using Keras embeddings.
        #       As soon as the transition is complete, all embeddings should be keras.Embeddings layers, and
        #       the weights will always be in embeddings.embeddings.
        if hasattr(embeddings, "embeddings"):
            embedding_size = embeddings.embeddings.shape[0]
        else:
            embedding_size = embeddings.weight.shape[0]
510
511
        if len(tokenizer) > embedding_size:
            model.resize_token_embeddings(len(tokenizer))
512

Matt's avatar
Matt committed
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
        if isinstance(tokenizer, tuple(MULTILINGUAL_TOKENIZERS)):
            model.config.forced_bos_token_id = forced_bos_token_id
        # endregion

        # region Set decoder_start_token_id
        if model.config.decoder_start_token_id is None and isinstance(tokenizer, (MBartTokenizer, MBartTokenizerFast)):
            assert (
                data_args.target_lang is not None and data_args.source_lang is not None
            ), "mBart requires --target_lang and --source_lang"
            if isinstance(tokenizer, MBartTokenizer):
                model.config.decoder_start_token_id = tokenizer.lang_code_to_id[data_args.target_lang]
            else:
                model.config.decoder_start_token_id = tokenizer.convert_tokens_to_ids(data_args.target_lang)

        if model.config.decoder_start_token_id is None:
            raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined")
        # endregion

        # region Prepare TF Dataset objects
Matt's avatar
Matt committed
532
533
534
535
536
537
        label_pad_token_id = -100 if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id
        data_collator = DataCollatorForSeq2Seq(
            tokenizer,
            model=model,
            label_pad_token_id=label_pad_token_id,
            pad_to_multiple_of=64,  # Reduce the number of unique shapes for XLA, especially for generation
538
            return_tensors="np",
Matt's avatar
Matt committed
539
        )
Matt's avatar
Matt committed
540
541
542
        num_replicas = training_args.strategy.num_replicas_in_sync
        total_train_batch_size = training_args.per_device_train_batch_size * num_replicas
        total_eval_batch_size = training_args.per_device_eval_batch_size * num_replicas
Matt's avatar
Matt committed
543
544
545
546
547
548
549
550
551
552
553
554
555
556

        dataset_options = tf.data.Options()
        dataset_options.experimental_distribute.auto_shard_policy = tf.data.experimental.AutoShardPolicy.OFF

        # model.prepare_tf_dataset() wraps a Hugging Face dataset in a tf.data.Dataset which is ready to use in
        # training. This is the recommended way to use a Hugging Face dataset when training with Keras. You can also
        # use the lower-level dataset.to_tf_dataset() method, but you will have to specify things like column names
        # yourself if you use this method, whereas they are automatically inferred from the model input names when
        # using model.prepare_tf_dataset()
        # For more info see the docs:
        # https://huggingface.co/docs/transformers/main/en/main_classes/model#transformers.TFPreTrainedModel.prepare_tf_dataset
        # https://huggingface.co/docs/datasets/main/en/package_reference/main_classes#datasets.Dataset.to_tf_dataset

        tf_train_dataset = model.prepare_tf_dataset(
Matt's avatar
Matt committed
557
            train_dataset,
Matt's avatar
Matt committed
558
559
            collate_fn=data_collator,
            batch_size=total_train_batch_size,
Matt's avatar
Matt committed
560
            shuffle=True,
Matt's avatar
Matt committed
561
562
563
564
        ).with_options(dataset_options)
        tf_eval_dataset = model.prepare_tf_dataset(
            eval_dataset, collate_fn=data_collator, batch_size=total_eval_batch_size, shuffle=False
        ).with_options(dataset_options)
Matt's avatar
Matt committed
565
566
        # endregion

Matt's avatar
Matt committed
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
        # region Optimizer and LR scheduling
        num_train_steps = int(len(tf_train_dataset) * training_args.num_train_epochs)
        if training_args.warmup_steps > 0:
            num_warmup_steps = training_args.warmup_steps
        elif training_args.warmup_ratio > 0:
            num_warmup_steps = int(num_train_steps * training_args.warmup_ratio)
        else:
            num_warmup_steps = 0
        if training_args.do_train:
            optimizer, lr_schedule = create_optimizer(
                init_lr=training_args.learning_rate,
                num_train_steps=num_train_steps,
                num_warmup_steps=num_warmup_steps,
                adam_beta1=training_args.adam_beta1,
                adam_beta2=training_args.adam_beta2,
                adam_epsilon=training_args.adam_epsilon,
                weight_decay_rate=training_args.weight_decay,
                adam_global_clipnorm=training_args.max_grad_norm,
Matt's avatar
Matt committed
585
            )
Matt's avatar
Matt committed
586
        else:
587
            optimizer = "sgd"  # Just write anything because we won't be using it
Matt's avatar
Matt committed
588
589
590
        # endregion

        # region Metric and postprocessing
Matt's avatar
Matt committed
591
        if training_args.do_eval:
592
            metric = evaluate.load("sacrebleu", cache_dir=model_args.cache_dir)
Matt's avatar
Matt committed
593

Matt's avatar
Matt committed
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
            if data_args.val_max_target_length is None:
                data_args.val_max_target_length = data_args.max_target_length

            gen_kwargs = {
                "max_length": data_args.val_max_target_length,
                "num_beams": data_args.num_beams,
                "no_repeat_ngram_size": 0,  # Not supported under XLA right now, and some models set it by default
            }

            def postprocess_text(preds, labels):
                preds = [pred.strip() for pred in preds]
                labels = [[label.strip()] for label in labels]

                return preds, labels

            def compute_metrics(preds):
                predictions, labels = preds
                if isinstance(predictions, tuple):
                    predictions = predictions[0]
                decoded_preds = tokenizer.batch_decode(predictions, skip_special_tokens=True)
                labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
                decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
                decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels)
                metrics = metric.compute(predictions=decoded_preds, references=decoded_labels)
                return {"bleu": metrics["score"]}

            # The KerasMetricCallback allows metrics that are too complex to write as standard Keras metrics
            # to be computed each epoch. Any Python code can be included in the metric_fn. This is especially
            # useful for metrics like BLEU and ROUGE that perform string comparisons on decoded model outputs.
            # For more information, see the docs at
            # https://huggingface.co/docs/transformers/main_classes/keras_callbacks#transformers.KerasMetricCallback

            metric_callback = KerasMetricCallback(
                metric_fn=compute_metrics,
                eval_dataset=tf_eval_dataset,
                predict_with_generate=True,
                use_xla_generation=True,
                generate_kwargs=gen_kwargs,
            )
            callbacks = [metric_callback]
        else:
            callbacks = []
Matt's avatar
Matt committed
636

Matt's avatar
Matt committed
637
        # endregion
Matt's avatar
Matt committed
638

Matt's avatar
Matt committed
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
        # region Preparing push_to_hub and model card
        push_to_hub_model_id = training_args.push_to_hub_model_id
        model_name = model_args.model_name_or_path.split("/")[-1]
        if not push_to_hub_model_id:
            push_to_hub_model_id = f"{model_name}-finetuned-{data_args.source_lang}-{data_args.target_lang}"

        model_card_kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "translation"}
        if data_args.dataset_name is not None:
            model_card_kwargs["dataset_tags"] = data_args.dataset_name
            if data_args.dataset_config_name is not None:
                model_card_kwargs["dataset_args"] = data_args.dataset_config_name
                model_card_kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
            else:
                model_card_kwargs["dataset"] = data_args.dataset_name

        languages = [l for l in [data_args.source_lang, data_args.target_lang] if l is not None]
        if len(languages) > 0:
            model_card_kwargs["language"] = languages

        if training_args.push_to_hub:
            # Because this training can be quite long, we save once per epoch.
            callbacks.append(
                PushToHubCallback(
                    output_dir=training_args.output_dir,
663
664
                    hub_model_id=push_to_hub_model_id,
                    hub_token=training_args.push_to_hub_token,
Matt's avatar
Matt committed
665
666
667
668
                    tokenizer=tokenizer,
                    **model_card_kwargs,
                )
            )
Matt's avatar
Matt committed
669
670
671
        # endregion

        # region Training
Matt's avatar
Matt committed
672
        eval_metrics = None
673
674
        # Transformers models compute the right loss for their task by default when labels are passed, and will
        # use this for training unless you specify your own loss function in compile().
Matt's avatar
Matt committed
675
        model.compile(optimizer=optimizer, jit_compile=training_args.xla)
Matt's avatar
Matt committed
676
677
678
679
680
681
682
683
684

        if training_args.do_train:
            logger.info("***** Running training *****")
            logger.info(f"  Num examples = {len(train_dataset)}")
            logger.info(f"  Num Epochs = {training_args.num_train_epochs}")
            logger.info(f"  Instantaneous batch size per device = {training_args.per_device_train_batch_size}")
            logger.info(f"  Total train batch size = {total_train_batch_size}")
            logger.info(f"  Total optimization steps = {num_train_steps}")

Matt's avatar
Matt committed
685
686
687
688
689
690
691
692
            if training_args.xla and not data_args.pad_to_max_length:
                logger.warning(
                    "XLA training may be slow at first when --pad_to_max_length is not set "
                    "until all possible shapes have been compiled."
                )

            history = model.fit(tf_train_dataset, epochs=int(training_args.num_train_epochs), callbacks=callbacks)
            eval_metrics = {key: val[-1] for key, val in history.history.items()}
Matt's avatar
Matt committed
693
694
695
        # endregion

        # region Validation
Matt's avatar
Matt committed
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
        if training_args.do_eval and not training_args.do_train:
            # Compiling generation with XLA yields enormous speedups, see https://huggingface.co/blog/tf-xla-generate
            @tf.function(jit_compile=True)
            def generate(**kwargs):
                return model.generate(**kwargs)

            if training_args.do_eval:
                logger.info("Evaluation...")
                for batch, labels in tf_eval_dataset:
                    batch.update(gen_kwargs)
                    generated_tokens = generate(**batch)
                    if isinstance(generated_tokens, tuple):
                        generated_tokens = generated_tokens[0]
                    decoded_preds = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
                    labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
                    decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
                    decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels)

                    metric.add_batch(predictions=decoded_preds, references=decoded_labels)

                eval_metrics = metric.compute()
                logger.info({"bleu": eval_metrics["score"]})
Matt's avatar
Matt committed
718
719
        # endregion

Matt's avatar
Matt committed
720
721
722
723
724
725
726
        if training_args.output_dir is not None and eval_metrics is not None:
            output_eval_file = os.path.join(training_args.output_dir, "all_results.json")
            with open(output_eval_file, "w") as writer:
                writer.write(json.dumps(eval_metrics))

        if training_args.output_dir is not None and not training_args.push_to_hub:
            # If we're not pushing to hub, at least save a local copy when we're done
Matt's avatar
Matt committed
727
728
729
730
731
            model.save_pretrained(training_args.output_dir)


if __name__ == "__main__":
    main()