utils_mmimdb.py 4.45 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
# coding=utf-8
# Copyright (c) Facebook, Inc. and its affiliates.
# Copyright (c) HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import json
import os
from collections import Counter

import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
Aymeric Augustin's avatar
Aymeric Augustin committed
25
from PIL import Image
26
from torch.utils.data import Dataset
Aymeric Augustin's avatar
Aymeric Augustin committed
27

28

29
POOLING_BREAKDOWN = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)}
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64


class ImageEncoder(nn.Module):
    def __init__(self, args):
        super(ImageEncoder, self).__init__()
        model = torchvision.models.resnet152(pretrained=True)
        modules = list(model.children())[:-2]
        self.model = nn.Sequential(*modules)
        self.pool = nn.AdaptiveAvgPool2d(POOLING_BREAKDOWN[args.num_image_embeds])

    def forward(self, x):
        # Bx3x224x224 -> Bx2048x7x7 -> Bx2048xN -> BxNx2048
        out = self.pool(self.model(x))
        out = torch.flatten(out, start_dim=2)
        out = out.transpose(1, 2).contiguous()
        return out  # BxNx2048


class JsonlDataset(Dataset):
    def __init__(self, data_path, tokenizer, transforms, labels, max_seq_length):
        self.data = [json.loads(l) for l in open(data_path)]
        self.data_dir = os.path.dirname(data_path)
        self.tokenizer = tokenizer
        self.labels = labels
        self.n_classes = len(labels)
        self.max_seq_length = max_seq_length

        self.transforms = transforms

    def __len__(self):
        return len(self.data)

    def __getitem__(self, index):
        sentence = torch.LongTensor(self.tokenizer.encode(self.data[index]["text"], add_special_tokens=True))
        start_token, sentence, end_token = sentence[0], sentence[1:-1], sentence[-1]
65
        sentence = sentence[: self.max_seq_length]
66
67
68
69
70
71
72

        label = torch.zeros(self.n_classes)
        label[[self.labels.index(tgt) for tgt in self.data[index]["label"]]] = 1

        image = Image.open(os.path.join(self.data_dir, self.data[index]["img"])).convert("RGB")
        image = self.transforms(image)

73
74
75
76
77
78
79
        return {
            "image_start_token": start_token,
            "image_end_token": end_token,
            "sentence": sentence,
            "image": image,
            "label": label,
        }
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107

    def get_label_frequencies(self):
        label_freqs = Counter()
        for row in self.data:
            label_freqs.update(row["label"])
        return label_freqs


def collate_fn(batch):
    lens = [len(row["sentence"]) for row in batch]
    bsz, max_seq_len = len(batch), max(lens)

    mask_tensor = torch.zeros(bsz, max_seq_len, dtype=torch.long)
    text_tensor = torch.zeros(bsz, max_seq_len, dtype=torch.long)

    for i_batch, (input_row, length) in enumerate(zip(batch, lens)):
        text_tensor[i_batch, :length] = input_row["sentence"]
        mask_tensor[i_batch, :length] = 1

    img_tensor = torch.stack([row["image"] for row in batch])
    tgt_tensor = torch.stack([row["label"] for row in batch])
    img_start_token = torch.stack([row["image_start_token"] for row in batch])
    img_end_token = torch.stack([row["image_end_token"] for row in batch])

    return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor


def get_mmimdb_labels():
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
    return [
        "Crime",
        "Drama",
        "Thriller",
        "Action",
        "Comedy",
        "Romance",
        "Documentary",
        "Short",
        "Mystery",
        "History",
        "Family",
        "Adventure",
        "Fantasy",
        "Sci-Fi",
        "Western",
        "Horror",
        "Sport",
        "War",
        "Music",
        "Musical",
        "Animation",
        "Biography",
        "Film-Noir",
    ]
133
134
135
136
137
138
139
140


def get_image_transforms():
    return transforms.Compose(
        [
            transforms.Resize(256),
            transforms.CenterCrop(224),
            transforms.ToTensor(),
141
            transforms.Normalize(mean=[0.46777044, 0.44531429, 0.40661017], std=[0.12221994, 0.12145835, 0.14380469],),
142
143
        ]
    )