__init__.py 105 KB
Newer Older
1
2
3
4
# flake8: noqa
# There's no way to ignore "F401 '...' imported but unused" warnings in this
# module, but to preserve other warnings. So, don't check this module at all.

Sylvain Gugger's avatar
Sylvain Gugger committed
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

19
20
21
22
23
24
# When adding a new object to this init, remember to add it twice: once inside the `_import_structure` dictionary and
# once inside the `if TYPE_CHECKING` branch. The `TYPE_CHECKING` should have import statements as usual, but they are
# only there for type checking. The `_import_structure` is a dictionary submodule to list of object names, and is used
# to defer the actual importing for when the objects are requested. This way `import transformers` provides the names
# in the namespace without actually importing anything (and especially none of the backends).

Lysandre's avatar
Lysandre committed
25
__version__ = "4.7.0.dev0"
thomwolf's avatar
thomwolf committed
26

thomwolf's avatar
thomwolf committed
27
28
29
30
31
32
# Work around to update TensorFlow's absl.logging threshold which alters the
# default Python logging output behavior when present.
# see: https://github.com/abseil/abseil-py/issues/99
# and: https://github.com/tensorflow/tensorflow/issues/26691#issuecomment-500369493
try:
    import absl.logging
33
34
35
except ImportError:
    pass
else:
36
37
    absl.logging.set_verbosity("info")
    absl.logging.set_stderrthreshold("info")
thomwolf's avatar
thomwolf committed
38
    absl.logging._warn_preinit_stderr = False
39

40
from typing import TYPE_CHECKING
41

42
43
# Check the dependencies satisfy the minimal versions required.
from . import dependency_versions_check
Aymeric Augustin's avatar
Aymeric Augustin committed
44
from .file_utils import (
45
    _BaseLazyModule,
46
    is_flax_available,
47
    is_sentencepiece_available,
48
    is_speech_available,
Aymeric Augustin's avatar
Aymeric Augustin committed
49
    is_tf_available,
50
    is_tokenizers_available,
Aymeric Augustin's avatar
Aymeric Augustin committed
51
    is_torch_available,
52
    is_vision_available,
Aymeric Augustin's avatar
Aymeric Augustin committed
53
)
54
from .utils import logging
Julien Chaumond's avatar
Julien Chaumond committed
55

56

57
logger = logging.get_logger(__name__)  # pylint: disable=invalid-name
58

59

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
# Base objects, independent of any specific backend
_import_structure = {
    "configuration_utils": ["PretrainedConfig"],
    "data": [
        "DataProcessor",
        "InputExample",
        "InputFeatures",
        "SingleSentenceClassificationProcessor",
        "SquadExample",
        "SquadFeatures",
        "SquadV1Processor",
        "SquadV2Processor",
        "glue_compute_metrics",
        "glue_convert_examples_to_features",
        "glue_output_modes",
        "glue_processors",
        "glue_tasks_num_labels",
        "squad_convert_examples_to_features",
        "xnli_compute_metrics",
        "xnli_output_modes",
        "xnli_processors",
        "xnli_tasks_num_labels",
    ],
Sylvain Gugger's avatar
Sylvain Gugger committed
83
    "feature_extraction_sequence_utils": ["BatchFeature", "SequenceFeatureExtractor"],
84
85
86
87
88
89
90
91
92
93
    "file_utils": [
        "CONFIG_NAME",
        "MODEL_CARD_NAME",
        "PYTORCH_PRETRAINED_BERT_CACHE",
        "PYTORCH_TRANSFORMERS_CACHE",
        "SPIECE_UNDERLINE",
        "TF2_WEIGHTS_NAME",
        "TF_WEIGHTS_NAME",
        "TRANSFORMERS_CACHE",
        "WEIGHTS_NAME",
94
        "TensorType",
95
96
97
98
99
100
101
102
103
104
105
        "add_end_docstrings",
        "add_start_docstrings",
        "cached_path",
        "is_apex_available",
        "is_datasets_available",
        "is_faiss_available",
        "is_flax_available",
        "is_psutil_available",
        "is_py3nvml_available",
        "is_sentencepiece_available",
        "is_sklearn_available",
106
        "is_speech_available",
107
108
109
110
        "is_tf_available",
        "is_tokenizers_available",
        "is_torch_available",
        "is_torch_tpu_available",
111
        "is_vision_available",
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
    ],
    "hf_argparser": ["HfArgumentParser"],
    "integrations": [
        "is_comet_available",
        "is_optuna_available",
        "is_ray_available",
        "is_ray_tune_available",
        "is_tensorboard_available",
        "is_wandb_available",
    ],
    "modelcard": ["ModelCard"],
    "modeling_tf_pytorch_utils": [
        "convert_tf_weight_name_to_pt_weight_name",
        "load_pytorch_checkpoint_in_tf2_model",
        "load_pytorch_model_in_tf2_model",
        "load_pytorch_weights_in_tf2_model",
        "load_tf2_checkpoint_in_pytorch_model",
        "load_tf2_model_in_pytorch_model",
        "load_tf2_weights_in_pytorch_model",
    ],
    # Models
Sylvain Gugger's avatar
Sylvain Gugger committed
133
    "models": [],
134
135
136
137
    "models.albert": ["ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "AlbertConfig"],
    "models.auto": [
        "ALL_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "CONFIG_MAPPING",
138
        "FEATURE_EXTRACTOR_MAPPING",
139
140
141
        "MODEL_NAMES_MAPPING",
        "TOKENIZER_MAPPING",
        "AutoConfig",
142
        "AutoFeatureExtractor",
143
144
145
146
147
148
149
150
151
152
153
154
155
156
        "AutoTokenizer",
    ],
    "models.bart": ["BartConfig", "BartTokenizer"],
    "models.barthez": [],
    "models.bert": [
        "BERT_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "BasicTokenizer",
        "BertConfig",
        "BertTokenizer",
        "WordpieceTokenizer",
    ],
    "models.bert_generation": ["BertGenerationConfig"],
    "models.bert_japanese": ["BertJapaneseTokenizer", "CharacterTokenizer", "MecabTokenizer"],
    "models.bertweet": ["BertweetTokenizer"],
Vasudev Gupta's avatar
Vasudev Gupta committed
157
    "models.big_bird": ["BIG_BIRD_PRETRAINED_CONFIG_ARCHIVE_MAP", "BigBirdConfig", "BigBirdTokenizer"],
Vasudev Gupta's avatar
Vasudev Gupta committed
158
159
160
161
    "models.bigbird_pegasus": [
        "BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "BigBirdPegasusConfig",
    ],
162
163
164
165
166
167
168
    "models.blenderbot": ["BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotConfig", "BlenderbotTokenizer"],
    "models.blenderbot_small": [
        "BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "BlenderbotSmallConfig",
        "BlenderbotSmallTokenizer",
    ],
    "models.camembert": ["CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "CamembertConfig"],
Suraj Patil's avatar
Suraj Patil committed
169
170
171
172
173
174
175
    "models.clip": [
        "CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "CLIPConfig",
        "CLIPTextConfig",
        "CLIPTokenizer",
        "CLIPVisionConfig",
    ],
Sylvain Gugger's avatar
Sylvain Gugger committed
176
    "models.convbert": ["CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvBertConfig", "ConvBertTokenizer"],
177
    "models.cpm": ["CpmTokenizer"],
178
179
    "models.ctrl": ["CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP", "CTRLConfig", "CTRLTokenizer"],
    "models.deberta": ["DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "DebertaConfig", "DebertaTokenizer"],
180
    "models.deberta_v2": ["DEBERTA_V2_PRETRAINED_CONFIG_ARCHIVE_MAP", "DebertaV2Config"],
NielsRogge's avatar
NielsRogge committed
181
    "models.deit": ["DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DeiTConfig"],
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
    "models.distilbert": ["DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DistilBertConfig", "DistilBertTokenizer"],
    "models.dpr": [
        "DPR_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "DPRConfig",
        "DPRContextEncoderTokenizer",
        "DPRQuestionEncoderTokenizer",
        "DPRReaderOutput",
        "DPRReaderTokenizer",
    ],
    "models.electra": ["ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP", "ElectraConfig", "ElectraTokenizer"],
    "models.encoder_decoder": ["EncoderDecoderConfig"],
    "models.flaubert": ["FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "FlaubertConfig", "FlaubertTokenizer"],
    "models.fsmt": ["FSMT_PRETRAINED_CONFIG_ARCHIVE_MAP", "FSMTConfig", "FSMTTokenizer"],
    "models.funnel": ["FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP", "FunnelConfig", "FunnelTokenizer"],
    "models.gpt2": ["GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPT2Config", "GPT2Tokenizer"],
Suraj Patil's avatar
Suraj Patil committed
197
    "models.gpt_neo": ["GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoConfig"],
198
    "models.herbert": ["HerbertTokenizer"],
Sehoon Kim's avatar
Sehoon Kim committed
199
    "models.ibert": ["IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "IBertConfig"],
200
201
202
    "models.layoutlm": ["LAYOUTLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "LayoutLMConfig", "LayoutLMTokenizer"],
    "models.led": ["LED_PRETRAINED_CONFIG_ARCHIVE_MAP", "LEDConfig", "LEDTokenizer"],
    "models.longformer": ["LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "LongformerConfig", "LongformerTokenizer"],
NielsRogge's avatar
NielsRogge committed
203
    "models.luke": ["LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP", "LukeConfig", "LukeTokenizer"],
204
    "models.lxmert": ["LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "LxmertConfig", "LxmertTokenizer"],
Sylvain Gugger's avatar
Sylvain Gugger committed
205
    "models.m2m_100": ["M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP", "M2M100Config"],
206
207
    "models.marian": ["MarianConfig"],
    "models.mbart": ["MBartConfig"],
208
    "models.megatron_bert": ["MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MegatronBertConfig"],
209
210
211
212
213
214
215
216
217
218
219
220
    "models.mmbt": ["MMBTConfig"],
    "models.mobilebert": ["MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MobileBertConfig", "MobileBertTokenizer"],
    "models.mpnet": ["MPNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "MPNetConfig", "MPNetTokenizer"],
    "models.mt5": ["MT5Config"],
    "models.openai": ["OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "OpenAIGPTConfig", "OpenAIGPTTokenizer"],
    "models.pegasus": ["PegasusConfig"],
    "models.phobert": ["PhobertTokenizer"],
    "models.prophetnet": ["PROPHETNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "ProphetNetConfig", "ProphetNetTokenizer"],
    "models.rag": ["RagConfig", "RagRetriever", "RagTokenizer"],
    "models.reformer": ["REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ReformerConfig"],
    "models.retribert": ["RETRIBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "RetriBertConfig", "RetriBertTokenizer"],
    "models.roberta": ["ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "RobertaConfig", "RobertaTokenizer"],
221
    "models.roformer": ["ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoFormerConfig", "RoFormerTokenizer"],
Sylvain Gugger's avatar
Sylvain Gugger committed
222
223
224
225
    "models.speech_to_text": [
        "SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "Speech2TextConfig",
    ],
226
227
228
229
230
231
232
233
234
    "models.squeezebert": ["SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "SqueezeBertConfig", "SqueezeBertTokenizer"],
    "models.t5": ["T5_PRETRAINED_CONFIG_ARCHIVE_MAP", "T5Config"],
    "models.tapas": ["TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP", "TapasConfig", "TapasTokenizer"],
    "models.transfo_xl": [
        "TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "TransfoXLConfig",
        "TransfoXLCorpus",
        "TransfoXLTokenizer",
    ],
235
    "models.vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig"],
Sylvain Gugger's avatar
Sylvain Gugger committed
236
237
238
239
240
241
242
243
    "models.wav2vec2": [
        "WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP",
        "Wav2Vec2Config",
        "Wav2Vec2CTCTokenizer",
        "Wav2Vec2FeatureExtractor",
        "Wav2Vec2Processor",
        "Wav2Vec2Tokenizer",
    ],
244
245
246
247
248
    "models.xlm": ["XLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMConfig", "XLMTokenizer"],
    "models.xlm_prophetnet": ["XLM_PROPHETNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMProphetNetConfig"],
    "models.xlm_roberta": ["XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMRobertaConfig"],
    "models.xlnet": ["XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLNetConfig"],
    "pipelines": [
249
        "AutomaticSpeechRecognitionPipeline",
250
251
252
253
254
        "Conversation",
        "ConversationalPipeline",
        "CsvPipelineDataFormat",
        "FeatureExtractionPipeline",
        "FillMaskPipeline",
255
        "ImageClassificationPipeline",
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
        "JsonPipelineDataFormat",
        "NerPipeline",
        "PipedPipelineDataFormat",
        "Pipeline",
        "PipelineDataFormat",
        "QuestionAnsweringPipeline",
        "SummarizationPipeline",
        "TableQuestionAnsweringPipeline",
        "Text2TextGenerationPipeline",
        "TextClassificationPipeline",
        "TextGenerationPipeline",
        "TokenClassificationPipeline",
        "TranslationPipeline",
        "ZeroShotClassificationPipeline",
        "pipeline",
    ],
    "tokenization_utils": ["PreTrainedTokenizer"],
    "tokenization_utils_base": [
        "AddedToken",
        "BatchEncoding",
        "CharSpan",
        "PreTrainedTokenizerBase",
        "SpecialTokensMixin",
        "TokenSpan",
    ],
    "trainer_callback": [
        "DefaultFlowCallback",
        "EarlyStoppingCallback",
        "PrinterCallback",
        "ProgressCallback",
        "TrainerCallback",
        "TrainerControl",
        "TrainerState",
    ],
290
    "trainer_utils": ["EvalPrediction", "IntervalStrategy", "SchedulerType", "set_seed"],
291
292
293
294
295
    "training_args": ["TrainingArguments"],
    "training_args_seq2seq": ["Seq2SeqTrainingArguments"],
    "training_args_tf": ["TFTrainingArguments"],
    "utils": ["logging"],
}
296

297
# sentencepiece-backed objects
298
if is_sentencepiece_available():
299
300
301
302
    _import_structure["models.albert"].append("AlbertTokenizer")
    _import_structure["models.barthez"].append("BarthezTokenizer")
    _import_structure["models.bert_generation"].append("BertGenerationTokenizer")
    _import_structure["models.camembert"].append("CamembertTokenizer")
303
304
    _import_structure["models.deberta_v2"].append("DebertaV2Tokenizer")
    _import_structure["models.m2m_100"].append("M2M100Tokenizer")
305
306
    _import_structure["models.marian"].append("MarianTokenizer")
    _import_structure["models.mbart"].append("MBartTokenizer")
Suraj Patil's avatar
Suraj Patil committed
307
    _import_structure["models.mbart"].append("MBart50Tokenizer")
308
309
310
    _import_structure["models.mt5"].append("MT5Tokenizer")
    _import_structure["models.pegasus"].append("PegasusTokenizer")
    _import_structure["models.reformer"].append("ReformerTokenizer")
Suraj Patil's avatar
Suraj Patil committed
311
    _import_structure["models.speech_to_text"].append("Speech2TextTokenizer")
312
313
314
315
    _import_structure["models.t5"].append("T5Tokenizer")
    _import_structure["models.xlm_prophetnet"].append("XLMProphetNetTokenizer")
    _import_structure["models.xlm_roberta"].append("XLMRobertaTokenizer")
    _import_structure["models.xlnet"].append("XLNetTokenizer")
316
else:
317
    from .utils import dummy_sentencepiece_objects
318

319
320
321
322
    _import_structure["utils.dummy_sentencepiece_objects"] = [
        name for name in dir(dummy_sentencepiece_objects) if not name.startswith("_")
    ]

323
# tokenizers-backed objects
324
if is_tokenizers_available():
325
    # Fast tokenizers
326
    _import_structure["models.roformer"].append("RoFormerTokenizerFast")
Suraj Patil's avatar
Suraj Patil committed
327
    _import_structure["models.clip"].append("CLIPTokenizerFast")
abhishek thakur's avatar
abhishek thakur committed
328
    _import_structure["models.convbert"].append("ConvBertTokenizerFast")
329
330
331
332
    _import_structure["models.albert"].append("AlbertTokenizerFast")
    _import_structure["models.bart"].append("BartTokenizerFast")
    _import_structure["models.barthez"].append("BarthezTokenizerFast")
    _import_structure["models.bert"].append("BertTokenizerFast")
333
    _import_structure["models.big_bird"].append("BigBirdTokenizerFast")
334
    _import_structure["models.camembert"].append("CamembertTokenizerFast")
335
    _import_structure["models.deberta"].append("DebertaTokenizerFast")
336
337
338
339
340
341
342
343
344
345
346
347
348
    _import_structure["models.distilbert"].append("DistilBertTokenizerFast")
    _import_structure["models.dpr"].extend(
        ["DPRContextEncoderTokenizerFast", "DPRQuestionEncoderTokenizerFast", "DPRReaderTokenizerFast"]
    )
    _import_structure["models.electra"].append("ElectraTokenizerFast")
    _import_structure["models.funnel"].append("FunnelTokenizerFast")
    _import_structure["models.gpt2"].append("GPT2TokenizerFast")
    _import_structure["models.herbert"].append("HerbertTokenizerFast")
    _import_structure["models.layoutlm"].append("LayoutLMTokenizerFast")
    _import_structure["models.led"].append("LEDTokenizerFast")
    _import_structure["models.longformer"].append("LongformerTokenizerFast")
    _import_structure["models.lxmert"].append("LxmertTokenizerFast")
    _import_structure["models.mbart"].append("MBartTokenizerFast")
Suraj Patil's avatar
Suraj Patil committed
349
    _import_structure["models.mbart"].append("MBart50TokenizerFast")
350
351
352
353
354
355
356
357
358
359
360
361
362
    _import_structure["models.mobilebert"].append("MobileBertTokenizerFast")
    _import_structure["models.mpnet"].append("MPNetTokenizerFast")
    _import_structure["models.mt5"].append("MT5TokenizerFast")
    _import_structure["models.openai"].append("OpenAIGPTTokenizerFast")
    _import_structure["models.pegasus"].append("PegasusTokenizerFast")
    _import_structure["models.reformer"].append("ReformerTokenizerFast")
    _import_structure["models.retribert"].append("RetriBertTokenizerFast")
    _import_structure["models.roberta"].append("RobertaTokenizerFast")
    _import_structure["models.squeezebert"].append("SqueezeBertTokenizerFast")
    _import_structure["models.t5"].append("T5TokenizerFast")
    _import_structure["models.xlm_roberta"].append("XLMRobertaTokenizerFast")
    _import_structure["models.xlnet"].append("XLNetTokenizerFast")
    _import_structure["tokenization_utils_fast"] = ["PreTrainedTokenizerFast"]
363
364

else:
365
    from .utils import dummy_tokenizers_objects
Aymeric Augustin's avatar
Aymeric Augustin committed
366

367
368
369
    _import_structure["utils.dummy_tokenizers_objects"] = [
        name for name in dir(dummy_tokenizers_objects) if not name.startswith("_")
    ]
Aymeric Augustin's avatar
Aymeric Augustin committed
370

371
372
373
374
375
376
377
378
379
if is_sentencepiece_available() and is_tokenizers_available():
    _import_structure["convert_slow_tokenizer"] = ["SLOW_TO_FAST_CONVERTERS", "convert_slow_tokenizer"]
else:
    from .utils import dummy_sentencepiece_and_tokenizers_objects

    _import_structure["utils.dummy_sentencepiece_and_tokenizers_objects"] = [
        name for name in dir(dummy_sentencepiece_and_tokenizers_objects) if not name.startswith("_")
    ]

380
381
382
383
384
385
386
387
388
389
390
# Speech-specific objects
if is_speech_available():
    _import_structure["models.speech_to_text"].append("Speech2TextFeatureExtractor")

else:
    from .utils import dummy_speech_objects

    _import_structure["utils.dummy_speech_objects"] = [
        name for name in dir(dummy_speech_objects) if not name.startswith("_")
    ]

391
392
393
394
395
396
397
398
399
if is_sentencepiece_available() and is_speech_available():
    _import_structure["models.speech_to_text"].append("Speech2TextProcessor")
else:
    from .utils import dummy_sentencepiece_and_speech_objects

    _import_structure["utils.dummy_sentencepiece_and_speech_objects"] = [
        name for name in dir(dummy_sentencepiece_and_speech_objects) if not name.startswith("_")
    ]

400
401
402
# Vision-specific objects
if is_vision_available():
    _import_structure["image_utils"] = ["ImageFeatureExtractionMixin"]
Suraj Patil's avatar
Suraj Patil committed
403
404
    _import_structure["models.clip"].append("CLIPFeatureExtractor")
    _import_structure["models.clip"].append("CLIPProcessor")
NielsRogge's avatar
NielsRogge committed
405
    _import_structure["models.deit"].append("DeiTFeatureExtractor")
406
    _import_structure["models.vit"].append("ViTFeatureExtractor")
407
408
409
410
411
412
413
else:
    from .utils import dummy_vision_objects

    _import_structure["utils.dummy_vision_objects"] = [
        name for name in dir(dummy_vision_objects) if not name.startswith("_")
    ]

414
# PyTorch-backed objects
thomwolf's avatar
thomwolf committed
415
if is_torch_available():
416
417
418
419
420
421
    _import_structure["benchmark.benchmark"] = ["PyTorchBenchmark"]
    _import_structure["benchmark.benchmark_args"] = ["PyTorchBenchmarkArguments"]
    _import_structure["data.data_collator"] = [
        "DataCollator",
        "DataCollatorForLanguageModeling",
        "DataCollatorForPermutationLanguageModeling",
422
        "DataCollatorForSeq2Seq",
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
        "DataCollatorForSOP",
        "DataCollatorForTokenClassification",
        "DataCollatorForWholeWordMask",
        "DataCollatorWithPadding",
        "default_data_collator",
    ]
    _import_structure["data.datasets"] = [
        "GlueDataset",
        "GlueDataTrainingArguments",
        "LineByLineTextDataset",
        "LineByLineWithRefDataset",
        "LineByLineWithSOPTextDataset",
        "SquadDataset",
        "SquadDataTrainingArguments",
        "TextDataset",
        "TextDatasetForNextSentencePrediction",
    ]
    _import_structure["generation_beam_search"] = ["BeamScorer", "BeamSearchScorer"]
    _import_structure["generation_logits_process"] = [
442
443
        "ForcedBOSTokenLogitsProcessor",
        "ForcedEOSTokenLogitsProcessor",
444
        "HammingDiversityLogitsProcessor",
445
        "InfNanRemoveLogitsProcessor",
446
447
448
449
450
451
452
453
454
455
456
457
        "LogitsProcessor",
        "LogitsProcessorList",
        "LogitsWarper",
        "MinLengthLogitsProcessor",
        "NoBadWordsLogitsProcessor",
        "NoRepeatNGramLogitsProcessor",
        "PrefixConstrainedLogitsProcessor",
        "RepetitionPenaltyLogitsProcessor",
        "TemperatureLogitsWarper",
        "TopKLogitsWarper",
        "TopPLogitsWarper",
    ]
458
459
460
    _import_structure["generation_stopping_criteria"] = [
        "MaxLengthCriteria",
        "MaxTimeCriteria",
Sylvain Gugger's avatar
Sylvain Gugger committed
461
462
        "StoppingCriteria",
        "StoppingCriteriaList",
463
    ]
464
465
    _import_structure["generation_utils"] = ["top_k_top_p_filtering"]
    _import_structure["modeling_utils"] = ["Conv1D", "PreTrainedModel", "apply_chunking_to_forward", "prune_layer"]
Suraj Patil's avatar
Suraj Patil committed
466

NielsRogge's avatar
NielsRogge committed
467
    # PyTorch models structure
468
469
470
471
472
473
474
475
476
477
478
479
480
481
    _import_structure["models.albert"].extend(
        [
            "ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "AlbertForMaskedLM",
            "AlbertForMultipleChoice",
            "AlbertForPreTraining",
            "AlbertForQuestionAnswering",
            "AlbertForSequenceClassification",
            "AlbertForTokenClassification",
            "AlbertModel",
            "AlbertPreTrainedModel",
            "load_tf_weights_in_albert",
        ]
    )
NielsRogge's avatar
NielsRogge committed
482

483
484
485
    _import_structure["models.auto"].extend(
        [
            "MODEL_FOR_CAUSAL_LM_MAPPING",
486
            "MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING",
487
488
489
490
491
492
493
494
495
496
497
498
499
            "MODEL_FOR_MASKED_LM_MAPPING",
            "MODEL_FOR_MULTIPLE_CHOICE_MAPPING",
            "MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING",
            "MODEL_FOR_PRETRAINING_MAPPING",
            "MODEL_FOR_QUESTION_ANSWERING_MAPPING",
            "MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING",
            "MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING",
            "MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING",
            "MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING",
            "MODEL_MAPPING",
            "MODEL_WITH_LM_HEAD_MAPPING",
            "AutoModel",
            "AutoModelForCausalLM",
500
            "AutoModelForImageClassification",
501
502
503
504
505
506
507
508
509
510
511
512
            "AutoModelForMaskedLM",
            "AutoModelForMultipleChoice",
            "AutoModelForNextSentencePrediction",
            "AutoModelForPreTraining",
            "AutoModelForQuestionAnswering",
            "AutoModelForSeq2SeqLM",
            "AutoModelForSequenceClassification",
            "AutoModelForTableQuestionAnswering",
            "AutoModelForTokenClassification",
            "AutoModelWithLMHead",
        ]
    )
Suraj Patil's avatar
Suraj Patil committed
513

514
515
516
    _import_structure["models.bart"].extend(
        [
            "BART_PRETRAINED_MODEL_ARCHIVE_LIST",
517
            "BartForCausalLM",
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
            "BartForConditionalGeneration",
            "BartForQuestionAnswering",
            "BartForSequenceClassification",
            "BartModel",
            "BartPretrainedModel",
            "PretrainedBartModel",
        ]
    )
    _import_structure["models.bert"].extend(
        [
            "BERT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "BertForMaskedLM",
            "BertForMultipleChoice",
            "BertForNextSentencePrediction",
            "BertForPreTraining",
            "BertForQuestionAnswering",
            "BertForSequenceClassification",
            "BertForTokenClassification",
            "BertLayer",
            "BertLMHeadModel",
            "BertModel",
            "BertPreTrainedModel",
            "load_tf_weights_in_bert",
        ]
    )
    _import_structure["models.bert_generation"].extend(
        [
            "BertGenerationDecoder",
            "BertGenerationEncoder",
            "load_tf_weights_in_bert_generation",
        ]
    )
Vasudev Gupta's avatar
Vasudev Gupta committed
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
    _import_structure["models.big_bird"].extend(
        [
            "BIG_BIRD_PRETRAINED_MODEL_ARCHIVE_LIST",
            "BigBirdForCausalLM",
            "BigBirdForMaskedLM",
            "BigBirdForMultipleChoice",
            "BigBirdForPreTraining",
            "BigBirdForQuestionAnswering",
            "BigBirdForSequenceClassification",
            "BigBirdForTokenClassification",
            "BigBirdLayer",
            "BigBirdModel",
            "BigBirdPreTrainedModel",
            "load_tf_weights_in_big_bird",
        ]
    )
Vasudev Gupta's avatar
Vasudev Gupta committed
566
567
568
569
570
571
572
573
574
575
    _import_structure["models.bigbird_pegasus"].extend(
        [
            "BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST",
            "BigBirdPegasusForCausalLM",
            "BigBirdPegasusForConditionalGeneration",
            "BigBirdPegasusForQuestionAnswering",
            "BigBirdPegasusForSequenceClassification",
            "BigBirdPegasusModel",
        ]
    )
576
577
578
    _import_structure["models.blenderbot"].extend(
        [
            "BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST",
Sylvain Gugger's avatar
Sylvain Gugger committed
579
            "BlenderbotForCausalLM",
580
581
582
583
584
585
586
            "BlenderbotForConditionalGeneration",
            "BlenderbotModel",
        ]
    )
    _import_structure["models.blenderbot_small"].extend(
        [
            "BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST",
Sylvain Gugger's avatar
Sylvain Gugger committed
587
            "BlenderbotSmallForCausalLM",
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
            "BlenderbotSmallForConditionalGeneration",
            "BlenderbotSmallModel",
        ]
    )
    _import_structure["models.camembert"].extend(
        [
            "CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "CamembertForCausalLM",
            "CamembertForMaskedLM",
            "CamembertForMultipleChoice",
            "CamembertForQuestionAnswering",
            "CamembertForSequenceClassification",
            "CamembertForTokenClassification",
            "CamembertModel",
        ]
    )
Suraj Patil's avatar
Suraj Patil committed
604
605
606
607
608
609
610
611
612
    _import_structure["models.clip"].extend(
        [
            "CLIP_PRETRAINED_MODEL_ARCHIVE_LIST",
            "CLIPModel",
            "CLIPPreTrainedModel",
            "CLIPTextModel",
            "CLIPVisionModel",
        ]
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
613
614
615
616
617
618
619
620
621
622
623
624
625
626
    _import_structure["models.convbert"].extend(
        [
            "CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "ConvBertForMaskedLM",
            "ConvBertForMultipleChoice",
            "ConvBertForQuestionAnswering",
            "ConvBertForSequenceClassification",
            "ConvBertForTokenClassification",
            "ConvBertLayer",
            "ConvBertModel",
            "ConvBertPreTrainedModel",
            "load_tf_weights_in_convbert",
        ]
    )
627
628
629
630
631
632
633
634
635
636
637
638
    _import_structure["models.ctrl"].extend(
        [
            "CTRL_PRETRAINED_MODEL_ARCHIVE_LIST",
            "CTRLForSequenceClassification",
            "CTRLLMHeadModel",
            "CTRLModel",
            "CTRLPreTrainedModel",
        ]
    )
    _import_structure["models.deberta"].extend(
        [
            "DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST",
Sylvain Gugger's avatar
Sylvain Gugger committed
639
640
            "DebertaForMaskedLM",
            "DebertaForQuestionAnswering",
641
            "DebertaForSequenceClassification",
Sylvain Gugger's avatar
Sylvain Gugger committed
642
            "DebertaForTokenClassification",
643
644
645
646
            "DebertaModel",
            "DebertaPreTrainedModel",
        ]
    )
647
648
649
    _import_structure["models.deberta_v2"].extend(
        [
            "DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST",
Sylvain Gugger's avatar
Sylvain Gugger committed
650
651
            "DebertaV2ForMaskedLM",
            "DebertaV2ForQuestionAnswering",
652
            "DebertaV2ForSequenceClassification",
Sylvain Gugger's avatar
Sylvain Gugger committed
653
            "DebertaV2ForTokenClassification",
654
655
656
657
            "DebertaV2Model",
            "DebertaV2PreTrainedModel",
        ]
    )
NielsRogge's avatar
NielsRogge committed
658
659
660
661
662
663
664
665
666
    _import_structure["models.deit"].extend(
        [
            "DEIT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "DeiTForImageClassification",
            "DeiTForImageClassificationWithTeacher",
            "DeiTModel",
            "DeiTPreTrainedModel",
        ]
    )
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
    _import_structure["models.distilbert"].extend(
        [
            "DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "DistilBertForMaskedLM",
            "DistilBertForMultipleChoice",
            "DistilBertForQuestionAnswering",
            "DistilBertForSequenceClassification",
            "DistilBertForTokenClassification",
            "DistilBertModel",
            "DistilBertPreTrainedModel",
        ]
    )
    _import_structure["models.dpr"].extend(
        [
            "DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST",
            "DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST",
            "DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST",
            "DPRContextEncoder",
            "DPRPretrainedContextEncoder",
            "DPRPretrainedQuestionEncoder",
            "DPRPretrainedReader",
            "DPRQuestionEncoder",
            "DPRReader",
        ]
    )
    _import_structure["models.electra"].extend(
        [
            "ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST",
            "ElectraForMaskedLM",
            "ElectraForMultipleChoice",
            "ElectraForPreTraining",
            "ElectraForQuestionAnswering",
            "ElectraForSequenceClassification",
            "ElectraForTokenClassification",
            "ElectraModel",
            "ElectraPreTrainedModel",
            "load_tf_weights_in_electra",
        ]
    )
    _import_structure["models.encoder_decoder"].append("EncoderDecoderModel")
    _import_structure["models.flaubert"].extend(
        [
            "FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "FlaubertForMultipleChoice",
            "FlaubertForQuestionAnswering",
            "FlaubertForQuestionAnsweringSimple",
            "FlaubertForSequenceClassification",
            "FlaubertForTokenClassification",
            "FlaubertModel",
            "FlaubertWithLMHeadModel",
        ]
    )
    _import_structure["models.fsmt"].extend(["FSMTForConditionalGeneration", "FSMTModel", "PretrainedFSMTModel"])
    _import_structure["models.funnel"].extend(
        [
            "FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST",
            "FunnelBaseModel",
            "FunnelForMaskedLM",
            "FunnelForMultipleChoice",
            "FunnelForPreTraining",
            "FunnelForQuestionAnswering",
            "FunnelForSequenceClassification",
            "FunnelForTokenClassification",
            "FunnelModel",
            "load_tf_weights_in_funnel",
        ]
    )
    _import_structure["models.gpt2"].extend(
        [
            "GPT2_PRETRAINED_MODEL_ARCHIVE_LIST",
            "GPT2DoubleHeadsModel",
            "GPT2ForSequenceClassification",
            "GPT2LMHeadModel",
            "GPT2Model",
            "GPT2PreTrainedModel",
            "load_tf_weights_in_gpt2",
        ]
    )
Suraj Patil's avatar
Suraj Patil committed
745
746
747
748
749
750
751
752
753
    _import_structure["models.gpt_neo"].extend(
        [
            "GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST",
            "GPTNeoForCausalLM",
            "GPTNeoModel",
            "GPTNeoPreTrainedModel",
            "load_tf_weights_in_gpt_neo",
        ]
    )
Sehoon Kim's avatar
Sehoon Kim committed
754
755
756
757
758
759
760
761
762
763
764
765
    _import_structure["models.ibert"].extend(
        [
            "IBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "IBertForMaskedLM",
            "IBertForMultipleChoice",
            "IBertForQuestionAnswering",
            "IBertForSequenceClassification",
            "IBertForTokenClassification",
            "IBertModel",
            "IBertPreTrainedModel",
        ]
    )
766
767
768
769
    _import_structure["models.layoutlm"].extend(
        [
            "LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST",
            "LayoutLMForMaskedLM",
NielsRogge's avatar
NielsRogge committed
770
            "LayoutLMForSequenceClassification",
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
            "LayoutLMForTokenClassification",
            "LayoutLMModel",
        ]
    )
    _import_structure["models.led"].extend(
        [
            "LED_PRETRAINED_MODEL_ARCHIVE_LIST",
            "LEDForConditionalGeneration",
            "LEDForQuestionAnswering",
            "LEDForSequenceClassification",
            "LEDModel",
        ]
    )
    _import_structure["models.longformer"].extend(
        [
            "LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
            "LongformerForMaskedLM",
            "LongformerForMultipleChoice",
            "LongformerForQuestionAnswering",
            "LongformerForSequenceClassification",
            "LongformerForTokenClassification",
            "LongformerModel",
            "LongformerSelfAttention",
        ]
    )
NielsRogge's avatar
NielsRogge committed
796
797
798
799
800
801
802
803
804
805
    _import_structure["models.luke"].extend(
        [
            "LUKE_PRETRAINED_MODEL_ARCHIVE_LIST",
            "LukeForEntityClassification",
            "LukeForEntityPairClassification",
            "LukeForEntitySpanClassification",
            "LukeModel",
            "LukePreTrainedModel",
        ]
    )
806
807
808
809
810
811
812
813
814
815
816
    _import_structure["models.lxmert"].extend(
        [
            "LxmertEncoder",
            "LxmertForPreTraining",
            "LxmertForQuestionAnswering",
            "LxmertModel",
            "LxmertPreTrainedModel",
            "LxmertVisualFeatureEncoder",
            "LxmertXLayer",
        ]
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
817
818
819
820
821
822
823
824
    _import_structure["models.m2m_100"].extend(
        [
            "M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST",
            "M2M100ForConditionalGeneration",
            "M2M100Model",
        ]
    )
    _import_structure["models.marian"].extend(["MarianForCausalLM", "MarianModel", "MarianMTModel"])
825
826
    _import_structure["models.mbart"].extend(
        [
827
            "MBartForCausalLM",
828
829
830
831
832
833
            "MBartForConditionalGeneration",
            "MBartForQuestionAnswering",
            "MBartForSequenceClassification",
            "MBartModel",
        ]
    )
834
835
836
837
838
839
840
841
842
843
844
845
846
847
    _import_structure["models.megatron_bert"].extend(
        [
            "MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "MegatronBertForCausalLM",
            "MegatronBertForMaskedLM",
            "MegatronBertForMultipleChoice",
            "MegatronBertForNextSentencePrediction",
            "MegatronBertForPreTraining",
            "MegatronBertForQuestionAnswering",
            "MegatronBertForSequenceClassification",
            "MegatronBertForTokenClassification",
            "MegatronBertModel",
        ]
    )
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
    _import_structure["models.mmbt"].extend(["MMBTForClassification", "MMBTModel", "ModalEmbeddings"])
    _import_structure["models.mobilebert"].extend(
        [
            "MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "MobileBertForMaskedLM",
            "MobileBertForMultipleChoice",
            "MobileBertForNextSentencePrediction",
            "MobileBertForPreTraining",
            "MobileBertForQuestionAnswering",
            "MobileBertForSequenceClassification",
            "MobileBertForTokenClassification",
            "MobileBertLayer",
            "MobileBertModel",
            "MobileBertPreTrainedModel",
            "load_tf_weights_in_mobilebert",
        ]
    )
    _import_structure["models.mpnet"].extend(
        [
            "MPNET_PRETRAINED_MODEL_ARCHIVE_LIST",
            "MPNetForMaskedLM",
            "MPNetForMultipleChoice",
            "MPNetForQuestionAnswering",
            "MPNetForSequenceClassification",
            "MPNetForTokenClassification",
            "MPNetLayer",
            "MPNetModel",
            "MPNetPreTrainedModel",
        ]
    )
    _import_structure["models.mt5"].extend(["MT5EncoderModel", "MT5ForConditionalGeneration", "MT5Model"])
    _import_structure["models.openai"].extend(
        [
            "OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "OpenAIGPTDoubleHeadsModel",
            "OpenAIGPTForSequenceClassification",
            "OpenAIGPTLMHeadModel",
            "OpenAIGPTModel",
            "OpenAIGPTPreTrainedModel",
            "load_tf_weights_in_openai_gpt",
        ]
    )
890
    _import_structure["models.pegasus"].extend(
Sylvain Gugger's avatar
Sylvain Gugger committed
891
        ["PegasusForCausalLM", "PegasusForConditionalGeneration", "PegasusModel"]
892
    )
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
    _import_structure["models.prophetnet"].extend(
        [
            "PROPHETNET_PRETRAINED_MODEL_ARCHIVE_LIST",
            "ProphetNetDecoder",
            "ProphetNetEncoder",
            "ProphetNetForCausalLM",
            "ProphetNetForConditionalGeneration",
            "ProphetNetModel",
            "ProphetNetPreTrainedModel",
        ]
    )
    _import_structure["models.rag"].extend(["RagModel", "RagSequenceForGeneration", "RagTokenForGeneration"])
    _import_structure["models.reformer"].extend(
        [
            "REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
            "ReformerAttention",
            "ReformerForMaskedLM",
            "ReformerForQuestionAnswering",
            "ReformerForSequenceClassification",
            "ReformerLayer",
            "ReformerModel",
            "ReformerModelWithLMHead",
        ]
    )
    _import_structure["models.retribert"].extend(
        ["RETRIBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "RetriBertModel", "RetriBertPreTrainedModel"]
    )
    _import_structure["models.roberta"].extend(
        [
            "ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST",
            "RobertaForCausalLM",
            "RobertaForMaskedLM",
            "RobertaForMultipleChoice",
            "RobertaForQuestionAnswering",
            "RobertaForSequenceClassification",
            "RobertaForTokenClassification",
            "RobertaModel",
        ]
    )
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
    _import_structure["models.roformer"].extend(
        [
            "ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
            "RoFormerForCausalLM",
            "RoFormerForMaskedLM",
            "RoFormerForMultipleChoice",
            "RoFormerForQuestionAnswering",
            "RoFormerForSequenceClassification",
            "RoFormerForTokenClassification",
            "RoFormerLayer",
            "RoFormerModel",
            "RoFormerPreTrainedModel",
            "load_tf_weights_in_roformer",
        ]
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
947
948
949
950
951
952
953
    _import_structure["models.speech_to_text"].extend(
        [
            "SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "Speech2TextForConditionalGeneration",
            "Speech2TextModel",
        ]
    )
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
    _import_structure["models.squeezebert"].extend(
        [
            "SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "SqueezeBertForMaskedLM",
            "SqueezeBertForMultipleChoice",
            "SqueezeBertForQuestionAnswering",
            "SqueezeBertForSequenceClassification",
            "SqueezeBertForTokenClassification",
            "SqueezeBertModel",
            "SqueezeBertModule",
            "SqueezeBertPreTrainedModel",
        ]
    )
    _import_structure["models.t5"].extend(
        [
            "T5_PRETRAINED_MODEL_ARCHIVE_LIST",
            "T5EncoderModel",
            "T5ForConditionalGeneration",
            "T5Model",
            "T5PreTrainedModel",
            "load_tf_weights_in_t5",
        ]
    )
    _import_structure["models.tapas"].extend(
        [
            "TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TapasForMaskedLM",
            "TapasForQuestionAnswering",
            "TapasForSequenceClassification",
            "TapasModel",
        ]
    )
    _import_structure["models.transfo_xl"].extend(
        [
            "TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST",
            "AdaptiveEmbedding",
            "TransfoXLForSequenceClassification",
            "TransfoXLLMHeadModel",
            "TransfoXLModel",
            "TransfoXLPreTrainedModel",
            "load_tf_weights_in_transfo_xl",
        ]
    )
997
998
999
1000
1001
1002
1003
1004
    _import_structure["models.vit"].extend(
        [
            "VIT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "ViTForImageClassification",
            "ViTModel",
            "ViTPreTrainedModel",
        ]
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
1005
1006
1007
1008
1009
1010
1011
1012
1013
    _import_structure["models.wav2vec2"].extend(
        [
            "WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST",
            "Wav2Vec2ForCTC",
            "Wav2Vec2ForMaskedLM",
            "Wav2Vec2Model",
            "Wav2Vec2PreTrainedModel",
        ]
    )
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
    _import_structure["models.xlm"].extend(
        [
            "XLM_PRETRAINED_MODEL_ARCHIVE_LIST",
            "XLMForMultipleChoice",
            "XLMForQuestionAnswering",
            "XLMForQuestionAnsweringSimple",
            "XLMForSequenceClassification",
            "XLMForTokenClassification",
            "XLMModel",
            "XLMPreTrainedModel",
            "XLMWithLMHeadModel",
        ]
    )
    _import_structure["models.xlm_prophetnet"].extend(
        [
            "XLM_PROPHETNET_PRETRAINED_MODEL_ARCHIVE_LIST",
            "XLMProphetNetDecoder",
            "XLMProphetNetEncoder",
            "XLMProphetNetForCausalLM",
            "XLMProphetNetForConditionalGeneration",
            "XLMProphetNetModel",
        ]
    )
    _import_structure["models.xlm_roberta"].extend(
        [
            "XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST",
            "XLMRobertaForCausalLM",
            "XLMRobertaForMaskedLM",
            "XLMRobertaForMultipleChoice",
            "XLMRobertaForQuestionAnswering",
            "XLMRobertaForSequenceClassification",
            "XLMRobertaForTokenClassification",
            "XLMRobertaModel",
        ]
    )
    _import_structure["models.xlnet"].extend(
        [
            "XLNET_PRETRAINED_MODEL_ARCHIVE_LIST",
            "XLNetForMultipleChoice",
            "XLNetForQuestionAnswering",
            "XLNetForQuestionAnsweringSimple",
            "XLNetForSequenceClassification",
            "XLNetForTokenClassification",
            "XLNetLMHeadModel",
            "XLNetModel",
            "XLNetPreTrainedModel",
            "load_tf_weights_in_xlnet",
        ]
    )
    _import_structure["optimization"] = [
        "Adafactor",
        "AdamW",
        "get_constant_schedule",
        "get_constant_schedule_with_warmup",
        "get_cosine_schedule_with_warmup",
        "get_cosine_with_hard_restarts_schedule_with_warmup",
        "get_linear_schedule_with_warmup",
        "get_polynomial_decay_schedule_with_warmup",
        "get_scheduler",
    ]
    _import_structure["trainer"] = ["Trainer"]
    _import_structure["trainer_pt_utils"] = ["torch_distributed_zero_first"]
    _import_structure["trainer_seq2seq"] = ["Seq2SeqTrainer"]
else:
    from .utils import dummy_pt_objects
Patrick von Platen's avatar
Patrick von Platen committed
1079

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
    _import_structure["utils.dummy_pt_objects"] = [name for name in dir(dummy_pt_objects) if not name.startswith("_")]

# TensorFlow-backed objects
if is_tf_available():
    _import_structure["benchmark.benchmark_args_tf"] = ["TensorFlowBenchmarkArguments"]
    _import_structure["benchmark.benchmark_tf"] = ["TensorFlowBenchmark"]
    _import_structure["generation_tf_utils"] = ["tf_top_k_top_p_filtering"]
    _import_structure["modeling_tf_utils"] = [
        "TFPreTrainedModel",
        "TFSequenceSummary",
        "TFSharedEmbeddings",
        "shape_list",
    ]
    # TensorFlow models structure
    _import_structure["models.albert"].extend(
        [
            "TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFAlbertForMaskedLM",
            "TFAlbertForMultipleChoice",
            "TFAlbertForPreTraining",
            "TFAlbertForQuestionAnswering",
            "TFAlbertForSequenceClassification",
            "TFAlbertForTokenClassification",
            "TFAlbertMainLayer",
            "TFAlbertModel",
            "TFAlbertPreTrainedModel",
        ]
1107
    )
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
    _import_structure["models.auto"].extend(
        [
            "TF_MODEL_FOR_CAUSAL_LM_MAPPING",
            "TF_MODEL_FOR_MASKED_LM_MAPPING",
            "TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING",
            "TF_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING",
            "TF_MODEL_FOR_PRETRAINING_MAPPING",
            "TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING",
            "TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING",
            "TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING",
            "TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING",
            "TF_MODEL_MAPPING",
            "TF_MODEL_WITH_LM_HEAD_MAPPING",
            "TFAutoModel",
            "TFAutoModelForCausalLM",
            "TFAutoModelForMaskedLM",
            "TFAutoModelForMultipleChoice",
            "TFAutoModelForPreTraining",
            "TFAutoModelForQuestionAnswering",
            "TFAutoModelForSeq2SeqLM",
            "TFAutoModelForSequenceClassification",
            "TFAutoModelForTokenClassification",
            "TFAutoModelWithLMHead",
        ]
Vasily Shamporov's avatar
Vasily Shamporov committed
1132
    )
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
    _import_structure["models.bart"].extend(["TFBartForConditionalGeneration", "TFBartModel", "TFBartPretrainedModel"])
    _import_structure["models.bert"].extend(
        [
            "TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFBertEmbeddings",
            "TFBertForMaskedLM",
            "TFBertForMultipleChoice",
            "TFBertForNextSentencePrediction",
            "TFBertForPreTraining",
            "TFBertForQuestionAnswering",
            "TFBertForSequenceClassification",
            "TFBertForTokenClassification",
            "TFBertLMHeadModel",
            "TFBertMainLayer",
            "TFBertModel",
            "TFBertPreTrainedModel",
        ]
1150
    )
1151
1152
1153
1154
    _import_structure["models.blenderbot"].extend(["TFBlenderbotForConditionalGeneration", "TFBlenderbotModel"])
    _import_structure["models.blenderbot_small"].extend(
        ["TFBlenderbotSmallForConditionalGeneration", "TFBlenderbotSmallModel"]
    )
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
    _import_structure["models.camembert"].extend(
        [
            "TF_CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFCamembertForMaskedLM",
            "TFCamembertForMultipleChoice",
            "TFCamembertForQuestionAnswering",
            "TFCamembertForSequenceClassification",
            "TFCamembertForTokenClassification",
            "TFCamembertModel",
        ]
1165
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
    _import_structure["models.convbert"].extend(
        [
            "TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFConvBertForMaskedLM",
            "TFConvBertForMultipleChoice",
            "TFConvBertForQuestionAnswering",
            "TFConvBertForSequenceClassification",
            "TFConvBertForTokenClassification",
            "TFConvBertLayer",
            "TFConvBertModel",
            "TFConvBertPreTrainedModel",
        ]
    )
1179
1180
1181
1182
1183
1184
1185
1186
    _import_structure["models.ctrl"].extend(
        [
            "TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFCTRLForSequenceClassification",
            "TFCTRLLMHeadModel",
            "TFCTRLModel",
            "TFCTRLPreTrainedModel",
        ]
NielsRogge's avatar
NielsRogge committed
1187
    )
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
    _import_structure["models.distilbert"].extend(
        [
            "TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFDistilBertForMaskedLM",
            "TFDistilBertForMultipleChoice",
            "TFDistilBertForQuestionAnswering",
            "TFDistilBertForSequenceClassification",
            "TFDistilBertForTokenClassification",
            "TFDistilBertMainLayer",
            "TFDistilBertModel",
            "TFDistilBertPreTrainedModel",
        ]
    )
    _import_structure["models.dpr"].extend(
        [
            "TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFDPRContextEncoder",
            "TFDPRPretrainedContextEncoder",
            "TFDPRPretrainedQuestionEncoder",
            "TFDPRPretrainedReader",
            "TFDPRQuestionEncoder",
            "TFDPRReader",
        ]
    )
    _import_structure["models.electra"].extend(
        [
            "TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFElectraForMaskedLM",
            "TFElectraForMultipleChoice",
            "TFElectraForPreTraining",
            "TFElectraForQuestionAnswering",
            "TFElectraForSequenceClassification",
            "TFElectraForTokenClassification",
            "TFElectraModel",
            "TFElectraPreTrainedModel",
        ]
    )
    _import_structure["models.flaubert"].extend(
        [
            "TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFFlaubertForMultipleChoice",
            "TFFlaubertForQuestionAnsweringSimple",
            "TFFlaubertForSequenceClassification",
            "TFFlaubertForTokenClassification",
            "TFFlaubertModel",
            "TFFlaubertWithLMHeadModel",
        ]
    )
    _import_structure["models.funnel"].extend(
        [
            "TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFFunnelBaseModel",
            "TFFunnelForMaskedLM",
            "TFFunnelForMultipleChoice",
            "TFFunnelForPreTraining",
            "TFFunnelForQuestionAnswering",
            "TFFunnelForSequenceClassification",
            "TFFunnelForTokenClassification",
            "TFFunnelModel",
        ]
    )
    _import_structure["models.gpt2"].extend(
        [
            "TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFGPT2DoubleHeadsModel",
            "TFGPT2ForSequenceClassification",
            "TFGPT2LMHeadModel",
            "TFGPT2MainLayer",
            "TFGPT2Model",
            "TFGPT2PreTrainedModel",
        ]
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
1262
1263
1264
1265
1266
1267
    _import_structure["models.layoutlm"].extend(
        [
            "TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFLayoutLMForMaskedLM",
            "TFLayoutLMForSequenceClassification",
            "TFLayoutLMForTokenClassification",
Sylvain Gugger's avatar
Sylvain Gugger committed
1268
            "TFLayoutLMMainLayer",
Sylvain Gugger's avatar
Sylvain Gugger committed
1269
1270
1271
1272
            "TFLayoutLMModel",
            "TFLayoutLMPreTrainedModel",
        ]
    )
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
    _import_structure["models.led"].extend(["TFLEDForConditionalGeneration", "TFLEDModel", "TFLEDPreTrainedModel"])
    _import_structure["models.longformer"].extend(
        [
            "TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFLongformerForMaskedLM",
            "TFLongformerForMultipleChoice",
            "TFLongformerForQuestionAnswering",
            "TFLongformerForSequenceClassification",
            "TFLongformerForTokenClassification",
            "TFLongformerModel",
            "TFLongformerSelfAttention",
        ]
    )
    _import_structure["models.lxmert"].extend(
        [
            "TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFLxmertForPreTraining",
            "TFLxmertMainLayer",
            "TFLxmertModel",
            "TFLxmertPreTrainedModel",
            "TFLxmertVisualFeatureEncoder",
        ]
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
1296
    _import_structure["models.marian"].extend(["TFMarianModel", "TFMarianMTModel"])
1297
    _import_structure["models.mbart"].extend(["TFMBartForConditionalGeneration", "TFMBartModel"])
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
    _import_structure["models.mobilebert"].extend(
        [
            "TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFMobileBertForMaskedLM",
            "TFMobileBertForMultipleChoice",
            "TFMobileBertForNextSentencePrediction",
            "TFMobileBertForPreTraining",
            "TFMobileBertForQuestionAnswering",
            "TFMobileBertForSequenceClassification",
            "TFMobileBertForTokenClassification",
            "TFMobileBertMainLayer",
            "TFMobileBertModel",
            "TFMobileBertPreTrainedModel",
        ]
    )
    _import_structure["models.mpnet"].extend(
        [
            "TF_MPNET_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFMPNetForMaskedLM",
            "TFMPNetForMultipleChoice",
            "TFMPNetForQuestionAnswering",
            "TFMPNetForSequenceClassification",
            "TFMPNetForTokenClassification",
            "TFMPNetMainLayer",
            "TFMPNetModel",
            "TFMPNetPreTrainedModel",
        ]
    )
    _import_structure["models.mt5"].extend(["TFMT5EncoderModel", "TFMT5ForConditionalGeneration", "TFMT5Model"])
    _import_structure["models.openai"].extend(
        [
            "TF_OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFOpenAIGPTDoubleHeadsModel",
            "TFOpenAIGPTForSequenceClassification",
            "TFOpenAIGPTLMHeadModel",
            "TFOpenAIGPTMainLayer",
            "TFOpenAIGPTModel",
            "TFOpenAIGPTPreTrainedModel",
        ]
    )
1338
    _import_structure["models.pegasus"].extend(["TFPegasusForConditionalGeneration", "TFPegasusModel"])
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
1339
1340
1341
1342
1343
1344
1345
    _import_structure["models.rag"].extend(
        [
            "TFRagModel",
            "TFRagSequenceForGeneration",
            "TFRagTokenForGeneration",
        ]
    )
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
    _import_structure["models.roberta"].extend(
        [
            "TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFRobertaForMaskedLM",
            "TFRobertaForMultipleChoice",
            "TFRobertaForQuestionAnswering",
            "TFRobertaForSequenceClassification",
            "TFRobertaForTokenClassification",
            "TFRobertaMainLayer",
            "TFRobertaModel",
            "TFRobertaPreTrainedModel",
        ]
    )
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
    _import_structure["models.roformer"].extend(
        [
            "TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFRoFormerForCausalLM",
            "TFRoFormerForMaskedLM",
            "TFRoFormerForMultipleChoice",
            "TFRoFormerForQuestionAnswering",
            "TFRoFormerForSequenceClassification",
            "TFRoFormerForTokenClassification",
            "TFRoFormerLayer",
            "TFRoFormerModel",
            "TFRoFormerPreTrainedModel",
        ]
    )
1373
1374
1375
1376
1377
1378
1379
1380
    _import_structure["models.t5"].extend(
        [
            "TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFT5EncoderModel",
            "TFT5ForConditionalGeneration",
            "TFT5Model",
            "TFT5PreTrainedModel",
        ]
1381
    )
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
    _import_structure["models.transfo_xl"].extend(
        [
            "TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFAdaptiveEmbedding",
            "TFTransfoXLForSequenceClassification",
            "TFTransfoXLLMHeadModel",
            "TFTransfoXLMainLayer",
            "TFTransfoXLModel",
            "TFTransfoXLPreTrainedModel",
        ]
    )
    _import_structure["models.xlm"].extend(
        [
            "TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFXLMForMultipleChoice",
            "TFXLMForQuestionAnsweringSimple",
            "TFXLMForSequenceClassification",
            "TFXLMForTokenClassification",
            "TFXLMMainLayer",
            "TFXLMModel",
            "TFXLMPreTrainedModel",
            "TFXLMWithLMHeadModel",
        ]
    )
    _import_structure["models.xlm_roberta"].extend(
        [
            "TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFXLMRobertaForMaskedLM",
            "TFXLMRobertaForMultipleChoice",
            "TFXLMRobertaForQuestionAnswering",
            "TFXLMRobertaForSequenceClassification",
            "TFXLMRobertaForTokenClassification",
            "TFXLMRobertaModel",
        ]
    )
    _import_structure["models.xlnet"].extend(
        [
            "TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST",
            "TFXLNetForMultipleChoice",
            "TFXLNetForQuestionAnsweringSimple",
            "TFXLNetForSequenceClassification",
            "TFXLNetForTokenClassification",
            "TFXLNetLMHeadModel",
            "TFXLNetMainLayer",
            "TFXLNetModel",
            "TFXLNetPreTrainedModel",
        ]
    )
    _import_structure["optimization_tf"] = ["AdamWeightDecay", "GradientAccumulator", "WarmUp", "create_optimizer"]
    _import_structure["trainer_tf"] = ["TFTrainer"]
thomwolf's avatar
thomwolf committed
1432

1433
else:
1434
    from .utils import dummy_tf_objects
1435

1436
1437
1438
1439
    _import_structure["utils.dummy_tf_objects"] = [name for name in dir(dummy_tf_objects) if not name.startswith("_")]

# FLAX-backed objects
if is_flax_available():
Patrick von Platen's avatar
Patrick von Platen committed
1440
1441
1442
1443
1444
1445
1446
1447
    _import_structure["generation_flax_logits_process"] = [
        "FlaxLogitsProcessor",
        "FlaxLogitsProcessorList",
        "FlaxLogitsWarper",
        "FlaxTemperatureLogitsWarper",
        "FlaxTopKLogitsWarper",
        "FlaxTopPLogitsWarper",
    ]
1448
    _import_structure["modeling_flax_utils"] = ["FlaxPreTrainedModel"]
1449
1450
    _import_structure["models.auto"].extend(
        [
Suraj Patil's avatar
Suraj Patil committed
1451
            "FLAX_MODEL_FOR_CAUSAL_LM_MAPPING",
1452
1453
1454
1455
1456
1457
1458
1459
1460
            "FLAX_MODEL_FOR_MASKED_LM_MAPPING",
            "FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING",
            "FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING",
            "FLAX_MODEL_FOR_PRETRAINING_MAPPING",
            "FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING",
            "FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING",
            "FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING",
            "FLAX_MODEL_MAPPING",
            "FlaxAutoModel",
Suraj Patil's avatar
Suraj Patil committed
1461
            "FlaxAutoModelForCausalLM",
1462
1463
1464
1465
1466
1467
1468
1469
1470
            "FlaxAutoModelForMaskedLM",
            "FlaxAutoModelForMultipleChoice",
            "FlaxAutoModelForNextSentencePrediction",
            "FlaxAutoModelForPreTraining",
            "FlaxAutoModelForQuestionAnswering",
            "FlaxAutoModelForSequenceClassification",
            "FlaxAutoModelForTokenClassification",
        ]
    )
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
    _import_structure["models.bert"].extend(
        [
            "FlaxBertForMaskedLM",
            "FlaxBertForMultipleChoice",
            "FlaxBertForNextSentencePrediction",
            "FlaxBertForPreTraining",
            "FlaxBertForQuestionAnswering",
            "FlaxBertForSequenceClassification",
            "FlaxBertForTokenClassification",
            "FlaxBertModel",
            "FlaxBertPreTrainedModel",
        ]
    )
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
    _import_structure["models.electra"].extend(
        [
            "FlaxElectraForMaskedLM",
            "FlaxElectraForMultipleChoice",
            "FlaxElectraForPreTraining",
            "FlaxElectraForQuestionAnswering",
            "FlaxElectraForSequenceClassification",
            "FlaxElectraForTokenClassification",
            "FlaxElectraModel",
            "FlaxElectraPreTrainedModel",
        ]
    )
Suraj Patil's avatar
Suraj Patil committed
1496
    _import_structure["models.gpt2"].extend(["FlaxGPT2LMHeadModel", "FlaxGPT2Model"])
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
    _import_structure["models.roberta"].extend(
        [
            "FlaxRobertaForMaskedLM",
            "FlaxRobertaForMultipleChoice",
            "FlaxRobertaForQuestionAnswering",
            "FlaxRobertaForSequenceClassification",
            "FlaxRobertaForTokenClassification",
            "FlaxRobertaModel",
            "FlaxRobertaPreTrainedModel",
        ]
    )
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
else:
    from .utils import dummy_flax_objects

    _import_structure["utils.dummy_flax_objects"] = [
        name for name in dir(dummy_flax_objects) if not name.startswith("_")
    ]

# Direct imports for type-checking
if TYPE_CHECKING:
    # Configuration
    from .configuration_utils import PretrainedConfig

    # Data
    from .data import (
        DataProcessor,
        InputExample,
        InputFeatures,
        SingleSentenceClassificationProcessor,
        SquadExample,
        SquadFeatures,
        SquadV1Processor,
        SquadV2Processor,
        glue_compute_metrics,
        glue_convert_examples_to_features,
        glue_output_modes,
        glue_processors,
        glue_tasks_num_labels,
        squad_convert_examples_to_features,
        xnli_compute_metrics,
        xnli_output_modes,
        xnli_processors,
        xnli_tasks_num_labels,
    )

1542
    # Feature Extractor
1543
    from .feature_extraction_utils import BatchFeature, SequenceFeatureExtractor
1544

1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
    # Files and general utilities
    from .file_utils import (
        CONFIG_NAME,
        MODEL_CARD_NAME,
        PYTORCH_PRETRAINED_BERT_CACHE,
        PYTORCH_TRANSFORMERS_CACHE,
        SPIECE_UNDERLINE,
        TF2_WEIGHTS_NAME,
        TF_WEIGHTS_NAME,
        TRANSFORMERS_CACHE,
        WEIGHTS_NAME,
1556
        TensorType,
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
        add_end_docstrings,
        add_start_docstrings,
        cached_path,
        is_apex_available,
        is_datasets_available,
        is_faiss_available,
        is_flax_available,
        is_psutil_available,
        is_py3nvml_available,
        is_sentencepiece_available,
        is_sklearn_available,
1568
        is_speech_available,
1569
1570
1571
1572
        is_tf_available,
        is_tokenizers_available,
        is_torch_available,
        is_torch_tpu_available,
1573
        is_vision_available,
1574
1575
    )
    from .hf_argparser import HfArgumentParser
Patrick von Platen's avatar
Patrick von Platen committed
1576

1577
1578
1579
1580
1581
1582
1583
1584
    # Integrations
    from .integrations import (
        is_comet_available,
        is_optuna_available,
        is_ray_available,
        is_ray_tune_available,
        is_tensorboard_available,
        is_wandb_available,
1585
    )
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600

    # Model Cards
    from .modelcard import ModelCard

    # TF 2.0 <=> PyTorch conversion utilities
    from .modeling_tf_pytorch_utils import (
        convert_tf_weight_name_to_pt_weight_name,
        load_pytorch_checkpoint_in_tf2_model,
        load_pytorch_model_in_tf2_model,
        load_pytorch_weights_in_tf2_model,
        load_tf2_checkpoint_in_pytorch_model,
        load_tf2_model_in_pytorch_model,
        load_tf2_weights_in_pytorch_model,
    )
    from .models.albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig
Sylvain Gugger's avatar
Sylvain Gugger committed
1601
    from .models.auto import (
1602
1603
        ALL_PRETRAINED_CONFIG_ARCHIVE_MAP,
        CONFIG_MAPPING,
1604
        FEATURE_EXTRACTOR_MAPPING,
1605
1606
1607
        MODEL_NAMES_MAPPING,
        TOKENIZER_MAPPING,
        AutoConfig,
1608
        AutoFeatureExtractor,
1609
1610
1611
        AutoTokenizer,
    )
    from .models.bart import BartConfig, BartTokenizer
Sylvain Gugger's avatar
Sylvain Gugger committed
1612
    from .models.bert import (
1613
1614
1615
1616
1617
        BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
        BasicTokenizer,
        BertConfig,
        BertTokenizer,
        WordpieceTokenizer,
1618
    )
1619
1620
1621
    from .models.bert_generation import BertGenerationConfig
    from .models.bert_japanese import BertJapaneseTokenizer, CharacterTokenizer, MecabTokenizer
    from .models.bertweet import BertweetTokenizer
Vasudev Gupta's avatar
Vasudev Gupta committed
1622
    from .models.big_bird import BIG_BIRD_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdConfig, BigBirdTokenizer
Vasudev Gupta's avatar
Vasudev Gupta committed
1623
    from .models.bigbird_pegasus import BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig
1624
1625
1626
1627
1628
1629
1630
    from .models.blenderbot import BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotTokenizer
    from .models.blenderbot_small import (
        BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP,
        BlenderbotSmallConfig,
        BlenderbotSmallTokenizer,
    )
    from .models.camembert import CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CamembertConfig
Suraj Patil's avatar
Suraj Patil committed
1631
1632
1633
1634
1635
1636
1637
    from .models.clip import (
        CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
        CLIPConfig,
        CLIPTextConfig,
        CLIPTokenizer,
        CLIPVisionConfig,
    )
abhishek thakur's avatar
abhishek thakur committed
1638
    from .models.convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertTokenizer
1639
    from .models.cpm import CpmTokenizer
1640
1641
    from .models.ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig, CTRLTokenizer
    from .models.deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaTokenizer
1642
    from .models.deberta_v2 import DEBERTA_V2_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaV2Config
NielsRogge's avatar
NielsRogge committed
1643
    from .models.deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig
1644
    from .models.distilbert import DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertTokenizer
Sylvain Gugger's avatar
Sylvain Gugger committed
1645
    from .models.dpr import (
1646
1647
1648
1649
1650
1651
        DPR_PRETRAINED_CONFIG_ARCHIVE_MAP,
        DPRConfig,
        DPRContextEncoderTokenizer,
        DPRQuestionEncoderTokenizer,
        DPRReaderOutput,
        DPRReaderTokenizer,
1652
    )
1653
1654
1655
1656
1657
1658
    from .models.electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraTokenizer
    from .models.encoder_decoder import EncoderDecoderConfig
    from .models.flaubert import FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, FlaubertConfig, FlaubertTokenizer
    from .models.fsmt import FSMT_PRETRAINED_CONFIG_ARCHIVE_MAP, FSMTConfig, FSMTTokenizer
    from .models.funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig, FunnelTokenizer
    from .models.gpt2 import GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2Config, GPT2Tokenizer
Suraj Patil's avatar
Suraj Patil committed
1659
    from .models.gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig
1660
    from .models.herbert import HerbertTokenizer
Sehoon Kim's avatar
Sehoon Kim committed
1661
    from .models.ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig
1662
1663
1664
    from .models.layoutlm import LAYOUTLM_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMConfig, LayoutLMTokenizer
    from .models.led import LED_PRETRAINED_CONFIG_ARCHIVE_MAP, LEDConfig, LEDTokenizer
    from .models.longformer import LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, LongformerConfig, LongformerTokenizer
NielsRogge's avatar
NielsRogge committed
1665
    from .models.luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig, LukeTokenizer
1666
    from .models.lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig, LxmertTokenizer
1667
    from .models.m2m_100 import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, M2M100Config
1668
1669
    from .models.marian import MarianConfig
    from .models.mbart import MBartConfig
1670
    from .models.megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
    from .models.mmbt import MMBTConfig
    from .models.mobilebert import MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertTokenizer
    from .models.mpnet import MPNET_PRETRAINED_CONFIG_ARCHIVE_MAP, MPNetConfig, MPNetTokenizer
    from .models.mt5 import MT5Config
    from .models.openai import OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OpenAIGPTConfig, OpenAIGPTTokenizer
    from .models.pegasus import PegasusConfig
    from .models.phobert import PhobertTokenizer
    from .models.prophetnet import PROPHETNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ProphetNetConfig, ProphetNetTokenizer
    from .models.rag import RagConfig, RagRetriever, RagTokenizer
    from .models.reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig
    from .models.retribert import RETRIBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RetriBertConfig, RetriBertTokenizer
    from .models.roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaTokenizer
1683
    from .models.roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerTokenizer
1684
    from .models.speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, Speech2TextConfig
1685
1686
1687
    from .models.squeezebert import SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertTokenizer
    from .models.t5 import T5_PRETRAINED_CONFIG_ARCHIVE_MAP, T5Config
    from .models.tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig, TapasTokenizer
Sylvain Gugger's avatar
Sylvain Gugger committed
1688
    from .models.transfo_xl import (
1689
1690
1691
1692
1693
        TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP,
        TransfoXLConfig,
        TransfoXLCorpus,
        TransfoXLTokenizer,
    )
1694
    from .models.vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig
1695
1696
1697
1698
1699
1700
1701
1702
    from .models.wav2vec2 import (
        WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP,
        Wav2Vec2Config,
        Wav2Vec2CTCTokenizer,
        Wav2Vec2FeatureExtractor,
        Wav2Vec2Processor,
        Wav2Vec2Tokenizer,
    )
1703
1704
1705
1706
1707
1708
1709
    from .models.xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMTokenizer
    from .models.xlm_prophetnet import XLM_PROPHETNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMProphetNetConfig
    from .models.xlm_roberta import XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig
    from .models.xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig

    # Pipelines
    from .pipelines import (
1710
        AutomaticSpeechRecognitionPipeline,
1711
1712
1713
1714
1715
        Conversation,
        ConversationalPipeline,
        CsvPipelineDataFormat,
        FeatureExtractionPipeline,
        FillMaskPipeline,
1716
        ImageClassificationPipeline,
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
        JsonPipelineDataFormat,
        NerPipeline,
        PipedPipelineDataFormat,
        Pipeline,
        PipelineDataFormat,
        QuestionAnsweringPipeline,
        SummarizationPipeline,
        TableQuestionAnsweringPipeline,
        Text2TextGenerationPipeline,
        TextClassificationPipeline,
        TextGenerationPipeline,
        TokenClassificationPipeline,
        TranslationPipeline,
        ZeroShotClassificationPipeline,
        pipeline,
    )

    # Tokenization
    from .tokenization_utils import PreTrainedTokenizer
    from .tokenization_utils_base import (
        AddedToken,
        BatchEncoding,
        CharSpan,
        PreTrainedTokenizerBase,
        SpecialTokensMixin,
        TokenSpan,
    )
Lysandre's avatar
Lysandre committed
1744

Julien Plu's avatar
Julien Plu committed
1745
    # Trainer
1746
1747
1748
1749
1750
1751
1752
1753
1754
    from .trainer_callback import (
        DefaultFlowCallback,
        EarlyStoppingCallback,
        PrinterCallback,
        ProgressCallback,
        TrainerCallback,
        TrainerControl,
        TrainerState,
    )
1755
    from .trainer_utils import EvalPrediction, IntervalStrategy, SchedulerType, set_seed
1756
1757
1758
    from .training_args import TrainingArguments
    from .training_args_seq2seq import Seq2SeqTrainingArguments
    from .training_args_tf import TFTrainingArguments
1759
    from .utils import logging
Julien Plu's avatar
Julien Plu committed
1760

1761
1762
1763
1764
1765
    if is_sentencepiece_available():
        from .models.albert import AlbertTokenizer
        from .models.barthez import BarthezTokenizer
        from .models.bert_generation import BertGenerationTokenizer
        from .models.camembert import CamembertTokenizer
1766
1767
        from .models.deberta_v2 import DebertaV2Tokenizer
        from .models.m2m_100 import M2M100Tokenizer
1768
        from .models.marian import MarianTokenizer
Suraj Patil's avatar
Suraj Patil committed
1769
        from .models.mbart import MBart50Tokenizer, MBartTokenizer
1770
1771
1772
        from .models.mt5 import MT5Tokenizer
        from .models.pegasus import PegasusTokenizer
        from .models.reformer import ReformerTokenizer
1773
        from .models.speech_to_text import Speech2TextTokenizer
1774
1775
1776
1777
1778
1779
        from .models.t5 import T5Tokenizer
        from .models.xlm_prophetnet import XLMProphetNetTokenizer
        from .models.xlm_roberta import XLMRobertaTokenizer
        from .models.xlnet import XLNetTokenizer
    else:
        from .utils.dummy_sentencepiece_objects import *
1780

1781
1782
1783
1784
1785
    if is_tokenizers_available():
        from .models.albert import AlbertTokenizerFast
        from .models.bart import BartTokenizerFast
        from .models.barthez import BarthezTokenizerFast
        from .models.bert import BertTokenizerFast
1786
        from .models.big_bird import BigBirdTokenizerFast
1787
        from .models.camembert import CamembertTokenizerFast
Suraj Patil's avatar
Suraj Patil committed
1788
        from .models.clip import CLIPTokenizerFast
abhishek thakur's avatar
abhishek thakur committed
1789
        from .models.convbert import ConvBertTokenizerFast
1790
        from .models.deberta import DebertaTokenizerFast
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
        from .models.distilbert import DistilBertTokenizerFast
        from .models.dpr import DPRContextEncoderTokenizerFast, DPRQuestionEncoderTokenizerFast, DPRReaderTokenizerFast
        from .models.electra import ElectraTokenizerFast
        from .models.funnel import FunnelTokenizerFast
        from .models.gpt2 import GPT2TokenizerFast
        from .models.herbert import HerbertTokenizerFast
        from .models.layoutlm import LayoutLMTokenizerFast
        from .models.led import LEDTokenizerFast
        from .models.longformer import LongformerTokenizerFast
        from .models.lxmert import LxmertTokenizerFast
Suraj Patil's avatar
Suraj Patil committed
1801
        from .models.mbart import MBart50TokenizerFast, MBartTokenizerFast
1802
1803
1804
1805
1806
1807
1808
1809
        from .models.mobilebert import MobileBertTokenizerFast
        from .models.mpnet import MPNetTokenizerFast
        from .models.mt5 import MT5TokenizerFast
        from .models.openai import OpenAIGPTTokenizerFast
        from .models.pegasus import PegasusTokenizerFast
        from .models.reformer import ReformerTokenizerFast
        from .models.retribert import RetriBertTokenizerFast
        from .models.roberta import RobertaTokenizerFast
1810
        from .models.roformer import RoFormerTokenizerFast
1811
1812
1813
1814
1815
        from .models.squeezebert import SqueezeBertTokenizerFast
        from .models.t5 import T5TokenizerFast
        from .models.xlm_roberta import XLMRobertaTokenizerFast
        from .models.xlnet import XLNetTokenizerFast
        from .tokenization_utils_fast import PreTrainedTokenizerFast
1816

1817
1818
    else:
        from .utils.dummy_tokenizers_objects import *
1819

1820
1821
1822
1823
1824
    if is_sentencepiece_available() and is_tokenizers_available():
        from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS, convert_slow_tokenizer
    else:
        from .utils.dummies_sentencepiece_and_tokenizers_objects import *

1825
1826
1827
1828
1829
    if is_speech_available():
        from .models.speech_to_text import Speech2TextFeatureExtractor

    else:
        from .utils.dummy_speech_objects import *
1830
1831
1832
1833
1834

    if is_speech_available() and is_sentencepiece_available():
        from .models.speech_to_text import Speech2TextProcessor
    else:
        from .utils.dummy_sentencepiece_and_speech_objects import *
1835

1836
1837
    if is_vision_available():
        from .image_utils import ImageFeatureExtractionMixin
Suraj Patil's avatar
Suraj Patil committed
1838
        from .models.clip import CLIPFeatureExtractor, CLIPProcessor
NielsRogge's avatar
NielsRogge committed
1839
        from .models.deit import DeiTFeatureExtractor
1840
        from .models.vit import ViTFeatureExtractor
1841
1842
1843
    else:
        from .utils.dummy_vision_objects import *

1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
    # Modeling
    if is_torch_available():

        # Benchmarks
        from .benchmark.benchmark import PyTorchBenchmark
        from .benchmark.benchmark_args import PyTorchBenchmarkArguments
        from .data.data_collator import (
            DataCollator,
            DataCollatorForLanguageModeling,
            DataCollatorForPermutationLanguageModeling,
1854
            DataCollatorForSeq2Seq,
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
            DataCollatorForSOP,
            DataCollatorForTokenClassification,
            DataCollatorForWholeWordMask,
            DataCollatorWithPadding,
            default_data_collator,
        )
        from .data.datasets import (
            GlueDataset,
            GlueDataTrainingArguments,
            LineByLineTextDataset,
            LineByLineWithRefDataset,
            LineByLineWithSOPTextDataset,
            SquadDataset,
            SquadDataTrainingArguments,
            TextDataset,
            TextDatasetForNextSentencePrediction,
        )
        from .generation_beam_search import BeamScorer, BeamSearchScorer
        from .generation_logits_process import (
1874
1875
            ForcedBOSTokenLogitsProcessor,
            ForcedEOSTokenLogitsProcessor,
1876
            HammingDiversityLogitsProcessor,
1877
            InfNanRemoveLogitsProcessor,
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
            LogitsProcessor,
            LogitsProcessorList,
            LogitsWarper,
            MinLengthLogitsProcessor,
            NoBadWordsLogitsProcessor,
            NoRepeatNGramLogitsProcessor,
            PrefixConstrainedLogitsProcessor,
            RepetitionPenaltyLogitsProcessor,
            TemperatureLogitsWarper,
            TopKLogitsWarper,
            TopPLogitsWarper,
        )
1890
1891
1892
1893
1894
1895
        from .generation_stopping_criteria import (
            MaxLengthCriteria,
            MaxTimeCriteria,
            StoppingCriteria,
            StoppingCriteriaList,
        )
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
        from .generation_utils import top_k_top_p_filtering
        from .modeling_utils import Conv1D, PreTrainedModel, apply_chunking_to_forward, prune_layer
        from .models.albert import (
            ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
            AlbertForMaskedLM,
            AlbertForMultipleChoice,
            AlbertForPreTraining,
            AlbertForQuestionAnswering,
            AlbertForSequenceClassification,
            AlbertForTokenClassification,
            AlbertModel,
            AlbertPreTrainedModel,
            load_tf_weights_in_albert,
        )
        from .models.auto import (
            MODEL_FOR_CAUSAL_LM_MAPPING,
1912
            MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
            MODEL_FOR_MASKED_LM_MAPPING,
            MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
            MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING,
            MODEL_FOR_PRETRAINING_MAPPING,
            MODEL_FOR_QUESTION_ANSWERING_MAPPING,
            MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
            MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
            MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING,
            MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
            MODEL_MAPPING,
            MODEL_WITH_LM_HEAD_MAPPING,
            AutoModel,
            AutoModelForCausalLM,
1926
            AutoModelForImageClassification,
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
            AutoModelForMaskedLM,
            AutoModelForMultipleChoice,
            AutoModelForNextSentencePrediction,
            AutoModelForPreTraining,
            AutoModelForQuestionAnswering,
            AutoModelForSeq2SeqLM,
            AutoModelForSequenceClassification,
            AutoModelForTableQuestionAnswering,
            AutoModelForTokenClassification,
            AutoModelWithLMHead,
        )
        from .models.bart import (
            BART_PRETRAINED_MODEL_ARCHIVE_LIST,
1940
            BartForCausalLM,
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
            BartForConditionalGeneration,
            BartForQuestionAnswering,
            BartForSequenceClassification,
            BartModel,
            BartPretrainedModel,
            PretrainedBartModel,
        )
        from .models.bert import (
            BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
            BertForMaskedLM,
            BertForMultipleChoice,
            BertForNextSentencePrediction,
            BertForPreTraining,
            BertForQuestionAnswering,
            BertForSequenceClassification,
            BertForTokenClassification,
            BertLayer,
            BertLMHeadModel,
            BertModel,
            BertPreTrainedModel,
            load_tf_weights_in_bert,
        )
        from .models.bert_generation import (
            BertGenerationDecoder,
            BertGenerationEncoder,
            load_tf_weights_in_bert_generation,
        )
Vasudev Gupta's avatar
Vasudev Gupta committed
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
        from .models.big_bird import (
            BIG_BIRD_PRETRAINED_MODEL_ARCHIVE_LIST,
            BigBirdForCausalLM,
            BigBirdForMaskedLM,
            BigBirdForMultipleChoice,
            BigBirdForPreTraining,
            BigBirdForQuestionAnswering,
            BigBirdForSequenceClassification,
            BigBirdForTokenClassification,
            BigBirdLayer,
            BigBirdModel,
            BigBirdPreTrainedModel,
            load_tf_weights_in_big_bird,
        )
Vasudev Gupta's avatar
Vasudev Gupta committed
1982
1983
1984
1985
1986
1987
1988
1989
        from .models.bigbird_pegasus import (
            BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST,
            BigBirdPegasusForCausalLM,
            BigBirdPegasusForConditionalGeneration,
            BigBirdPegasusForQuestionAnswering,
            BigBirdPegasusForSequenceClassification,
            BigBirdPegasusModel,
        )
1990
1991
        from .models.blenderbot import (
            BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST,
1992
            BlenderbotForCausalLM,
1993
1994
1995
1996
1997
            BlenderbotForConditionalGeneration,
            BlenderbotModel,
        )
        from .models.blenderbot_small import (
            BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST,
1998
            BlenderbotSmallForCausalLM,
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
            BlenderbotSmallForConditionalGeneration,
            BlenderbotSmallModel,
        )
        from .models.camembert import (
            CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
            CamembertForCausalLM,
            CamembertForMaskedLM,
            CamembertForMultipleChoice,
            CamembertForQuestionAnswering,
            CamembertForSequenceClassification,
            CamembertForTokenClassification,
            CamembertModel,
        )
Suraj Patil's avatar
Suraj Patil committed
2012
2013
2014
2015
2016
2017
2018
        from .models.clip import (
            CLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
            CLIPModel,
            CLIPPreTrainedModel,
            CLIPTextModel,
            CLIPVisionModel,
        )
abhishek thakur's avatar
abhishek thakur committed
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
        from .models.convbert import (
            CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
            ConvBertForMaskedLM,
            ConvBertForMultipleChoice,
            ConvBertForQuestionAnswering,
            ConvBertForSequenceClassification,
            ConvBertForTokenClassification,
            ConvBertLayer,
            ConvBertModel,
            ConvBertPreTrainedModel,
            load_tf_weights_in_convbert,
        )
2031
2032
2033
2034
2035
2036
2037
2038
2039
        from .models.ctrl import (
            CTRL_PRETRAINED_MODEL_ARCHIVE_LIST,
            CTRLForSequenceClassification,
            CTRLLMHeadModel,
            CTRLModel,
            CTRLPreTrainedModel,
        )
        from .models.deberta import (
            DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
NielsRogge's avatar
NielsRogge committed
2040
2041
            DebertaForMaskedLM,
            DebertaForQuestionAnswering,
2042
            DebertaForSequenceClassification,
NielsRogge's avatar
NielsRogge committed
2043
            DebertaForTokenClassification,
2044
2045
2046
            DebertaModel,
            DebertaPreTrainedModel,
        )
2047
2048
2049
2050
2051
2052
2053
2054
2055
        from .models.deberta_v2 import (
            DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST,
            DebertaV2ForMaskedLM,
            DebertaV2ForQuestionAnswering,
            DebertaV2ForSequenceClassification,
            DebertaV2ForTokenClassification,
            DebertaV2Model,
            DebertaV2PreTrainedModel,
        )
NielsRogge's avatar
NielsRogge committed
2056
2057
2058
2059
2060
2061
2062
        from .models.deit import (
            DEIT_PRETRAINED_MODEL_ARCHIVE_LIST,
            DeiTForImageClassification,
            DeiTForImageClassificationWithTeacher,
            DeiTModel,
            DeiTPreTrainedModel,
        )
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
        from .models.distilbert import (
            DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
            DistilBertForMaskedLM,
            DistilBertForMultipleChoice,
            DistilBertForQuestionAnswering,
            DistilBertForSequenceClassification,
            DistilBertForTokenClassification,
            DistilBertModel,
            DistilBertPreTrainedModel,
        )
        from .models.dpr import (
            DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
            DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
            DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST,
            DPRContextEncoder,
            DPRPretrainedContextEncoder,
            DPRPretrainedQuestionEncoder,
            DPRPretrainedReader,
            DPRQuestionEncoder,
            DPRReader,
        )
        from .models.electra import (
            ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST,
            ElectraForMaskedLM,
            ElectraForMultipleChoice,
            ElectraForPreTraining,
            ElectraForQuestionAnswering,
            ElectraForSequenceClassification,
            ElectraForTokenClassification,
            ElectraModel,
            ElectraPreTrainedModel,
            load_tf_weights_in_electra,
        )
        from .models.encoder_decoder import EncoderDecoderModel
        from .models.flaubert import (
            FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
            FlaubertForMultipleChoice,
            FlaubertForQuestionAnswering,
            FlaubertForQuestionAnsweringSimple,
            FlaubertForSequenceClassification,
            FlaubertForTokenClassification,
            FlaubertModel,
            FlaubertWithLMHeadModel,
        )
        from .models.fsmt import FSMTForConditionalGeneration, FSMTModel, PretrainedFSMTModel
        from .models.funnel import (
            FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST,
            FunnelBaseModel,
            FunnelForMaskedLM,
            FunnelForMultipleChoice,
            FunnelForPreTraining,
            FunnelForQuestionAnswering,
            FunnelForSequenceClassification,
            FunnelForTokenClassification,
            FunnelModel,
            load_tf_weights_in_funnel,
        )
        from .models.gpt2 import (
            GPT2_PRETRAINED_MODEL_ARCHIVE_LIST,
            GPT2DoubleHeadsModel,
            GPT2ForSequenceClassification,
            GPT2LMHeadModel,
            GPT2Model,
            GPT2PreTrainedModel,
            load_tf_weights_in_gpt2,
        )
Suraj Patil's avatar
Suraj Patil committed
2129
2130
2131
2132
2133
2134
2135
        from .models.gpt_neo import (
            GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST,
            GPTNeoForCausalLM,
            GPTNeoModel,
            GPTNeoPreTrainedModel,
            load_tf_weights_in_gpt_neo,
        )
Sehoon Kim's avatar
Sehoon Kim committed
2136
2137
2138
2139
2140
2141
2142
2143
        from .models.ibert import (
            IBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
            IBertForMaskedLM,
            IBertForMultipleChoice,
            IBertForQuestionAnswering,
            IBertForSequenceClassification,
            IBertForTokenClassification,
            IBertModel,
2144
            IBertPreTrainedModel,
Sehoon Kim's avatar
Sehoon Kim committed
2145
        )
2146
2147
2148
        from .models.layoutlm import (
            LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST,
            LayoutLMForMaskedLM,
NielsRogge's avatar
NielsRogge committed
2149
            LayoutLMForSequenceClassification,
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
            LayoutLMForTokenClassification,
            LayoutLMModel,
        )
        from .models.led import (
            LED_PRETRAINED_MODEL_ARCHIVE_LIST,
            LEDForConditionalGeneration,
            LEDForQuestionAnswering,
            LEDForSequenceClassification,
            LEDModel,
        )
        from .models.longformer import (
            LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
            LongformerForMaskedLM,
            LongformerForMultipleChoice,
            LongformerForQuestionAnswering,
            LongformerForSequenceClassification,
            LongformerForTokenClassification,
            LongformerModel,
            LongformerSelfAttention,
        )
NielsRogge's avatar
NielsRogge committed
2170
2171
2172
2173
2174
2175
2176
2177
        from .models.luke import (
            LUKE_PRETRAINED_MODEL_ARCHIVE_LIST,
            LukeForEntityClassification,
            LukeForEntityPairClassification,
            LukeForEntitySpanClassification,
            LukeModel,
            LukePreTrainedModel,
        )
2178
2179
2180
2181
2182
2183
2184
2185
2186
        from .models.lxmert import (
            LxmertEncoder,
            LxmertForPreTraining,
            LxmertForQuestionAnswering,
            LxmertModel,
            LxmertPreTrainedModel,
            LxmertVisualFeatureEncoder,
            LxmertXLayer,
        )
Suraj Patil's avatar
Suraj Patil committed
2187
        from .models.m2m_100 import M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, M2M100ForConditionalGeneration, M2M100Model
2188
        from .models.marian import MarianForCausalLM, MarianModel, MarianMTModel
2189
        from .models.mbart import (
2190
            MBartForCausalLM,
2191
2192
2193
2194
2195
            MBartForConditionalGeneration,
            MBartForQuestionAnswering,
            MBartForSequenceClassification,
            MBartModel,
        )
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
        from .models.megatron_bert import (
            MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
            MegatronBertForCausalLM,
            MegatronBertForMaskedLM,
            MegatronBertForMultipleChoice,
            MegatronBertForNextSentencePrediction,
            MegatronBertForPreTraining,
            MegatronBertForQuestionAnswering,
            MegatronBertForSequenceClassification,
            MegatronBertForTokenClassification,
            MegatronBertModel,
        )
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
        from .models.mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings
        from .models.mobilebert import (
            MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
            MobileBertForMaskedLM,
            MobileBertForMultipleChoice,
            MobileBertForNextSentencePrediction,
            MobileBertForPreTraining,
            MobileBertForQuestionAnswering,
            MobileBertForSequenceClassification,
            MobileBertForTokenClassification,
            MobileBertLayer,
            MobileBertModel,
            MobileBertPreTrainedModel,
            load_tf_weights_in_mobilebert,
        )
        from .models.mpnet import (
            MPNET_PRETRAINED_MODEL_ARCHIVE_LIST,
            MPNetForMaskedLM,
            MPNetForMultipleChoice,
            MPNetForQuestionAnswering,
            MPNetForSequenceClassification,
            MPNetForTokenClassification,
            MPNetLayer,
            MPNetModel,
            MPNetPreTrainedModel,
        )
        from .models.mt5 import MT5EncoderModel, MT5ForConditionalGeneration, MT5Model
        from .models.openai import (
            OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST,
            OpenAIGPTDoubleHeadsModel,
            OpenAIGPTForSequenceClassification,
            OpenAIGPTLMHeadModel,
            OpenAIGPTModel,
            OpenAIGPTPreTrainedModel,
            load_tf_weights_in_openai_gpt,
        )
2244
        from .models.pegasus import PegasusForCausalLM, PegasusForConditionalGeneration, PegasusModel
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
        from .models.prophetnet import (
            PROPHETNET_PRETRAINED_MODEL_ARCHIVE_LIST,
            ProphetNetDecoder,
            ProphetNetEncoder,
            ProphetNetForCausalLM,
            ProphetNetForConditionalGeneration,
            ProphetNetModel,
            ProphetNetPreTrainedModel,
        )
        from .models.rag import RagModel, RagSequenceForGeneration, RagTokenForGeneration
        from .models.reformer import (
            REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
            ReformerAttention,
            ReformerForMaskedLM,
            ReformerForQuestionAnswering,
            ReformerForSequenceClassification,
            ReformerLayer,
            ReformerModel,
            ReformerModelWithLMHead,
        )
        from .models.retribert import RETRIBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RetriBertModel, RetriBertPreTrainedModel
        from .models.roberta import (
            ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
            RobertaForCausalLM,
            RobertaForMaskedLM,
            RobertaForMultipleChoice,
            RobertaForQuestionAnswering,
            RobertaForSequenceClassification,
            RobertaForTokenClassification,
            RobertaModel,
        )
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
        from .models.roformer import (
            ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
            RoFormerForCausalLM,
            RoFormerForMaskedLM,
            RoFormerForMultipleChoice,
            RoFormerForQuestionAnswering,
            RoFormerForSequenceClassification,
            RoFormerForTokenClassification,
            RoFormerLayer,
            RoFormerModel,
            RoFormerPreTrainedModel,
            load_tf_weights_in_roformer,
        )
Suraj Patil's avatar
Suraj Patil committed
2289
2290
2291
2292
2293
        from .models.speech_to_text import (
            SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
            Speech2TextForConditionalGeneration,
            Speech2TextModel,
        )
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
        from .models.squeezebert import (
            SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
            SqueezeBertForMaskedLM,
            SqueezeBertForMultipleChoice,
            SqueezeBertForQuestionAnswering,
            SqueezeBertForSequenceClassification,
            SqueezeBertForTokenClassification,
            SqueezeBertModel,
            SqueezeBertModule,
            SqueezeBertPreTrainedModel,
        )
        from .models.t5 import (
            T5_PRETRAINED_MODEL_ARCHIVE_LIST,
            T5EncoderModel,
            T5ForConditionalGeneration,
            T5Model,
            T5PreTrainedModel,
            load_tf_weights_in_t5,
        )
        from .models.tapas import (
            TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST,
            TapasForMaskedLM,
            TapasForQuestionAnswering,
            TapasForSequenceClassification,
            TapasModel,
        )
        from .models.transfo_xl import (
            TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST,
            AdaptiveEmbedding,
            TransfoXLForSequenceClassification,
            TransfoXLLMHeadModel,
            TransfoXLModel,
            TransfoXLPreTrainedModel,
            load_tf_weights_in_transfo_xl,
        )
2329
2330
2331
2332
2333
2334
        from .models.vit import (
            VIT_PRETRAINED_MODEL_ARCHIVE_LIST,
            ViTForImageClassification,
            ViTModel,
            ViTPreTrainedModel,
        )
Patrick von Platen's avatar
Patrick von Platen committed
2335
2336
        from .models.wav2vec2 import (
            WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST,
2337
            Wav2Vec2ForCTC,
Patrick von Platen's avatar
Patrick von Platen committed
2338
2339
2340
2341
            Wav2Vec2ForMaskedLM,
            Wav2Vec2Model,
            Wav2Vec2PreTrainedModel,
        )
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
        from .models.xlm import (
            XLM_PRETRAINED_MODEL_ARCHIVE_LIST,
            XLMForMultipleChoice,
            XLMForQuestionAnswering,
            XLMForQuestionAnsweringSimple,
            XLMForSequenceClassification,
            XLMForTokenClassification,
            XLMModel,
            XLMPreTrainedModel,
            XLMWithLMHeadModel,
        )
        from .models.xlm_prophetnet import (
            XLM_PROPHETNET_PRETRAINED_MODEL_ARCHIVE_LIST,
            XLMProphetNetDecoder,
            XLMProphetNetEncoder,
            XLMProphetNetForCausalLM,
            XLMProphetNetForConditionalGeneration,
            XLMProphetNetModel,
        )
        from .models.xlm_roberta import (
            XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
            XLMRobertaForCausalLM,
            XLMRobertaForMaskedLM,
            XLMRobertaForMultipleChoice,
            XLMRobertaForQuestionAnswering,
            XLMRobertaForSequenceClassification,
            XLMRobertaForTokenClassification,
            XLMRobertaModel,
        )
        from .models.xlnet import (
            XLNET_PRETRAINED_MODEL_ARCHIVE_LIST,
            XLNetForMultipleChoice,
            XLNetForQuestionAnswering,
            XLNetForQuestionAnsweringSimple,
            XLNetForSequenceClassification,
            XLNetForTokenClassification,
            XLNetLMHeadModel,
            XLNetModel,
            XLNetPreTrainedModel,
            load_tf_weights_in_xlnet,
        )

        # Optimization
        from .optimization import (
            Adafactor,
            AdamW,
            get_constant_schedule,
            get_constant_schedule_with_warmup,
            get_cosine_schedule_with_warmup,
            get_cosine_with_hard_restarts_schedule_with_warmup,
            get_linear_schedule_with_warmup,
            get_polynomial_decay_schedule_with_warmup,
            get_scheduler,
        )

        # Trainer
        from .trainer import Trainer
        from .trainer_pt_utils import torch_distributed_zero_first
        from .trainer_seq2seq import Seq2SeqTrainer
    else:
        from .utils.dummy_pt_objects import *

    # TensorFlow
    if is_tf_available():

        from .benchmark.benchmark_args_tf import TensorFlowBenchmarkArguments

        # Benchmarks
        from .benchmark.benchmark_tf import TensorFlowBenchmark
        from .generation_tf_utils import tf_top_k_top_p_filtering
Amir Tahmasbi's avatar
Amir Tahmasbi committed
2412
2413
2414
2415
2416
2417
2418
2419
2420
        from .modeling_tf_layoutlm import (
            TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST,
            TFLayoutLMForMaskedLM,
            TFLayoutLMForSequenceClassification,
            TFLayoutLMForTokenClassification,
            TFLayoutLMMainLayer,
            TFLayoutLMModel,
            TFLayoutLMPreTrainedModel,
        )
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
        from .modeling_tf_utils import TFPreTrainedModel, TFSequenceSummary, TFSharedEmbeddings, shape_list
        from .models.albert import (
            TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
            TFAlbertForMaskedLM,
            TFAlbertForMultipleChoice,
            TFAlbertForPreTraining,
            TFAlbertForQuestionAnswering,
            TFAlbertForSequenceClassification,
            TFAlbertForTokenClassification,
            TFAlbertMainLayer,
            TFAlbertModel,
            TFAlbertPreTrainedModel,
        )
        from .models.auto import (
            TF_MODEL_FOR_CAUSAL_LM_MAPPING,
            TF_MODEL_FOR_MASKED_LM_MAPPING,
            TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
            TF_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING,
            TF_MODEL_FOR_PRETRAINING_MAPPING,
            TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
            TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
            TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
            TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
            TF_MODEL_MAPPING,
            TF_MODEL_WITH_LM_HEAD_MAPPING,
            TFAutoModel,
            TFAutoModelForCausalLM,
            TFAutoModelForMaskedLM,
            TFAutoModelForMultipleChoice,
            TFAutoModelForPreTraining,
            TFAutoModelForQuestionAnswering,
            TFAutoModelForSeq2SeqLM,
            TFAutoModelForSequenceClassification,
            TFAutoModelForTokenClassification,
            TFAutoModelWithLMHead,
        )
        from .models.bart import TFBartForConditionalGeneration, TFBartModel, TFBartPretrainedModel
        from .models.bert import (
            TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
            TFBertEmbeddings,
            TFBertForMaskedLM,
            TFBertForMultipleChoice,
            TFBertForNextSentencePrediction,
            TFBertForPreTraining,
            TFBertForQuestionAnswering,
            TFBertForSequenceClassification,
            TFBertForTokenClassification,
            TFBertLMHeadModel,
            TFBertMainLayer,
            TFBertModel,
            TFBertPreTrainedModel,
        )
2473
2474
        from .models.blenderbot import TFBlenderbotForConditionalGeneration, TFBlenderbotModel
        from .models.blenderbot_small import TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel
2475
2476
2477
2478
2479
2480
2481
2482
2483
        from .models.camembert import (
            TF_CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
            TFCamembertForMaskedLM,
            TFCamembertForMultipleChoice,
            TFCamembertForQuestionAnswering,
            TFCamembertForSequenceClassification,
            TFCamembertForTokenClassification,
            TFCamembertModel,
        )
abhishek thakur's avatar
abhishek thakur committed
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
        from .models.convbert import (
            TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
            TFConvBertForMaskedLM,
            TFConvBertForMultipleChoice,
            TFConvBertForQuestionAnswering,
            TFConvBertForSequenceClassification,
            TFConvBertForTokenClassification,
            TFConvBertLayer,
            TFConvBertModel,
            TFConvBertPreTrainedModel,
        )
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
        from .models.ctrl import (
            TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST,
            TFCTRLForSequenceClassification,
            TFCTRLLMHeadModel,
            TFCTRLModel,
            TFCTRLPreTrainedModel,
        )
        from .models.distilbert import (
            TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
            TFDistilBertForMaskedLM,
            TFDistilBertForMultipleChoice,
            TFDistilBertForQuestionAnswering,
            TFDistilBertForSequenceClassification,
            TFDistilBertForTokenClassification,
            TFDistilBertMainLayer,
            TFDistilBertModel,
            TFDistilBertPreTrainedModel,
        )
        from .models.dpr import (
            TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
            TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
            TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST,
            TFDPRContextEncoder,
            TFDPRPretrainedContextEncoder,
            TFDPRPretrainedQuestionEncoder,
            TFDPRPretrainedReader,
            TFDPRQuestionEncoder,
            TFDPRReader,
        )
        from .models.electra import (
            TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST,
            TFElectraForMaskedLM,
            TFElectraForMultipleChoice,
            TFElectraForPreTraining,
            TFElectraForQuestionAnswering,
            TFElectraForSequenceClassification,
            TFElectraForTokenClassification,
            TFElectraModel,
            TFElectraPreTrainedModel,
        )
        from .models.flaubert import (
            TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
            TFFlaubertForMultipleChoice,
            TFFlaubertForQuestionAnsweringSimple,
            TFFlaubertForSequenceClassification,
            TFFlaubertForTokenClassification,
            TFFlaubertModel,
            TFFlaubertWithLMHeadModel,
        )
        from .models.funnel import (
            TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST,
            TFFunnelBaseModel,
            TFFunnelForMaskedLM,
            TFFunnelForMultipleChoice,
            TFFunnelForPreTraining,
            TFFunnelForQuestionAnswering,
            TFFunnelForSequenceClassification,
            TFFunnelForTokenClassification,
            TFFunnelModel,
        )
        from .models.gpt2 import (
            TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST,
            TFGPT2DoubleHeadsModel,
            TFGPT2ForSequenceClassification,
            TFGPT2LMHeadModel,
            TFGPT2MainLayer,
            TFGPT2Model,
            TFGPT2PreTrainedModel,
        )
        from .models.led import TFLEDForConditionalGeneration, TFLEDModel, TFLEDPreTrainedModel
        from .models.longformer import (
            TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
            TFLongformerForMaskedLM,
            TFLongformerForMultipleChoice,
            TFLongformerForQuestionAnswering,
            TFLongformerForSequenceClassification,
            TFLongformerForTokenClassification,
            TFLongformerModel,
            TFLongformerSelfAttention,
        )
        from .models.lxmert import (
            TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST,
            TFLxmertForPreTraining,
            TFLxmertMainLayer,
            TFLxmertModel,
            TFLxmertPreTrainedModel,
            TFLxmertVisualFeatureEncoder,
        )
Sylvain Gugger's avatar
Sylvain Gugger committed
2583
        from .models.marian import TFMarianModel, TFMarianMTModel
2584
        from .models.mbart import TFMBartForConditionalGeneration, TFMBartModel
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
        from .models.mobilebert import (
            TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
            TFMobileBertForMaskedLM,
            TFMobileBertForMultipleChoice,
            TFMobileBertForNextSentencePrediction,
            TFMobileBertForPreTraining,
            TFMobileBertForQuestionAnswering,
            TFMobileBertForSequenceClassification,
            TFMobileBertForTokenClassification,
            TFMobileBertMainLayer,
            TFMobileBertModel,
            TFMobileBertPreTrainedModel,
        )
        from .models.mpnet import (
            TF_MPNET_PRETRAINED_MODEL_ARCHIVE_LIST,
            TFMPNetForMaskedLM,
            TFMPNetForMultipleChoice,
            TFMPNetForQuestionAnswering,
            TFMPNetForSequenceClassification,
            TFMPNetForTokenClassification,
            TFMPNetMainLayer,
            TFMPNetModel,
            TFMPNetPreTrainedModel,
        )
        from .models.mt5 import TFMT5EncoderModel, TFMT5ForConditionalGeneration, TFMT5Model
        from .models.openai import (
            TF_OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST,
            TFOpenAIGPTDoubleHeadsModel,
            TFOpenAIGPTForSequenceClassification,
            TFOpenAIGPTLMHeadModel,
            TFOpenAIGPTMainLayer,
            TFOpenAIGPTModel,
            TFOpenAIGPTPreTrainedModel,
        )
2619
        from .models.pegasus import TFPegasusForConditionalGeneration, TFPegasusModel
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
2620
        from .models.rag import TFRagModel, TFRagSequenceForGeneration, TFRagTokenForGeneration
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
        from .models.roberta import (
            TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
            TFRobertaForMaskedLM,
            TFRobertaForMultipleChoice,
            TFRobertaForQuestionAnswering,
            TFRobertaForSequenceClassification,
            TFRobertaForTokenClassification,
            TFRobertaMainLayer,
            TFRobertaModel,
            TFRobertaPreTrainedModel,
        )
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
        from .models.roformer import (
            TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
            TFRoFormerForCausalLM,
            TFRoFormerForMaskedLM,
            TFRoFormerForMultipleChoice,
            TFRoFormerForQuestionAnswering,
            TFRoFormerForSequenceClassification,
            TFRoFormerForTokenClassification,
            TFRoFormerLayer,
            TFRoFormerModel,
            TFRoFormerPreTrainedModel,
        )
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
        from .models.t5 import (
            TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST,
            TFT5EncoderModel,
            TFT5ForConditionalGeneration,
            TFT5Model,
            TFT5PreTrainedModel,
        )
        from .models.transfo_xl import (
            TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST,
            TFAdaptiveEmbedding,
            TFTransfoXLForSequenceClassification,
            TFTransfoXLLMHeadModel,
            TFTransfoXLMainLayer,
            TFTransfoXLModel,
            TFTransfoXLPreTrainedModel,
        )
        from .models.xlm import (
            TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST,
            TFXLMForMultipleChoice,
            TFXLMForQuestionAnsweringSimple,
            TFXLMForSequenceClassification,
            TFXLMForTokenClassification,
            TFXLMMainLayer,
            TFXLMModel,
            TFXLMPreTrainedModel,
            TFXLMWithLMHeadModel,
        )
        from .models.xlm_roberta import (
            TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
            TFXLMRobertaForMaskedLM,
            TFXLMRobertaForMultipleChoice,
            TFXLMRobertaForQuestionAnswering,
            TFXLMRobertaForSequenceClassification,
            TFXLMRobertaForTokenClassification,
            TFXLMRobertaModel,
        )
        from .models.xlnet import (
            TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST,
            TFXLNetForMultipleChoice,
            TFXLNetForQuestionAnsweringSimple,
            TFXLNetForSequenceClassification,
            TFXLNetForTokenClassification,
            TFXLNetLMHeadModel,
            TFXLNetMainLayer,
            TFXLNetModel,
            TFXLNetPreTrainedModel,
        )

        # Optimization
        from .optimization_tf import AdamWeightDecay, GradientAccumulator, WarmUp, create_optimizer

        # Trainer
        from .trainer_tf import TFTrainer

    else:
        # Import the same objects as dummies to get them in the namespace.
        # They will raise an import error if the user tries to instantiate / use them.
        from .utils.dummy_tf_objects import *

    if is_flax_available():
Patrick von Platen's avatar
Patrick von Platen committed
2704
2705
2706
2707
2708
2709
2710
2711
        from .generation_flax_logits_process import (
            FlaxLogitsProcessor,
            FlaxLogitsProcessorList,
            FlaxLogitsWarper,
            FlaxTemperatureLogitsWarper,
            FlaxTopKLogitsWarper,
            FlaxTopPLogitsWarper,
        )
2712
        from .modeling_flax_utils import FlaxPreTrainedModel
2713
        from .models.auto import (
Suraj Patil's avatar
Suraj Patil committed
2714
            FLAX_MODEL_FOR_CAUSAL_LM_MAPPING,
2715
2716
2717
2718
2719
2720
2721
2722
2723
            FLAX_MODEL_FOR_MASKED_LM_MAPPING,
            FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
            FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING,
            FLAX_MODEL_FOR_PRETRAINING_MAPPING,
            FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
            FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
            FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
            FLAX_MODEL_MAPPING,
            FlaxAutoModel,
Suraj Patil's avatar
Suraj Patil committed
2724
            FlaxAutoModelForCausalLM,
2725
2726
2727
2728
2729
2730
2731
2732
            FlaxAutoModelForMaskedLM,
            FlaxAutoModelForMultipleChoice,
            FlaxAutoModelForNextSentencePrediction,
            FlaxAutoModelForPreTraining,
            FlaxAutoModelForQuestionAnswering,
            FlaxAutoModelForSequenceClassification,
            FlaxAutoModelForTokenClassification,
        )
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
        from .models.bert import (
            FlaxBertForMaskedLM,
            FlaxBertForMultipleChoice,
            FlaxBertForNextSentencePrediction,
            FlaxBertForPreTraining,
            FlaxBertForQuestionAnswering,
            FlaxBertForSequenceClassification,
            FlaxBertForTokenClassification,
            FlaxBertModel,
            FlaxBertPreTrainedModel,
        )
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
        from .models.electra import (
            FlaxElectraForMaskedLM,
            FlaxElectraForMultipleChoice,
            FlaxElectraForPreTraining,
            FlaxElectraForQuestionAnswering,
            FlaxElectraForSequenceClassification,
            FlaxElectraForTokenClassification,
            FlaxElectraModel,
            FlaxElectraPreTrainedModel,
        )
Suraj Patil's avatar
Suraj Patil committed
2754
        from .models.gpt2 import FlaxGPT2LMHeadModel, FlaxGPT2Model
2755
2756
2757
2758
2759
2760
2761
2762
2763
        from .models.roberta import (
            FlaxRobertaForMaskedLM,
            FlaxRobertaForMultipleChoice,
            FlaxRobertaForQuestionAnswering,
            FlaxRobertaForSequenceClassification,
            FlaxRobertaForTokenClassification,
            FlaxRobertaModel,
            FlaxRobertaPreTrainedModel,
        )
2764
2765
2766
2767
    else:
        # Import the same objects as dummies to get them in the namespace.
        # They will raise an import error if the user tries to instantiate / use them.
        from .utils.dummy_flax_objects import *
2768

2769
else:
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
    import importlib
    import os
    import sys

    class _LazyModule(_BaseLazyModule):
        """
        Module class that surfaces all objects but only performs associated imports when the objects are requested.
        """

        __file__ = globals()["__file__"]
        __path__ = [os.path.dirname(__file__)]

        def _get_module(self, module_name: str):
            return importlib.import_module("." + module_name, self.__name__)

        def __getattr__(self, name: str):
            # Special handling for the version, which is a constant from this module and not imported in a submodule.
            if name == "__version__":
                return __version__
            return super().__getattr__(name)

    sys.modules[__name__] = _LazyModule(__name__, _import_structure)
2792

2793

2794
if not is_tf_available() and not is_torch_available() and not is_flax_available():
2795
    logger.warning(
2796
        "None of PyTorch, TensorFlow >= 2.0, or Flax have been found. "
2797
        "Models won't be available and only tokenizers, configuration "
2798
2799
        "and file/data utilities can be used."
    )