run_pplm_discrim_train.py 19.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#! /usr/bin/env python3
# coding=utf-8

# This code is licensed under a non-commercial license.

import argparse
import csv
import json
import math
import time

import numpy as np
import torch
import torch.nn.functional as F
import torch.optim
import torch.optim as optim
import torch.utils.data as data
from nltk.tokenize.treebank import TreebankWordDetokenizer
from torchtext import data as torchtext_data
from torchtext import datasets
piero's avatar
piero committed
21
from tqdm import tqdm, trange
22

23
24
25
26
27
from transformers import GPT2Tokenizer, GPT2LMHeadModel

torch.manual_seed(0)
np.random.seed(0)
EPSILON = 1e-10
piero's avatar
piero committed
28
device = "cpu"
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
example_sentence = "This is incredible! I love it, this is the best chicken I have ever had."
max_length_seq = 100


class ClassificationHead(torch.nn.Module):
    """Classification Head for  transformer encoders"""

    def __init__(self, class_size, embed_size):
        super(ClassificationHead, self).__init__()
        self.class_size = class_size
        self.embed_size = embed_size
        # self.mlp1 = torch.nn.Linear(embed_size, embed_size)
        # self.mlp2 = (torch.nn.Linear(embed_size, class_size))
        self.mlp = torch.nn.Linear(embed_size, class_size)

    def forward(self, hidden_state):
        # hidden_state = F.relu(self.mlp1(hidden_state))
        # hidden_state = self.mlp2(hidden_state)
        logits = self.mlp(hidden_state)
        return logits


class Discriminator(torch.nn.Module):
    """Transformer encoder followed by a Classification Head"""

    def __init__(
            self,
            class_size,
            pretrained_model="gpt2-medium",
            cached_mode=False
    ):
        super(Discriminator, self).__init__()
        self.tokenizer = GPT2Tokenizer.from_pretrained(pretrained_model)
        self.encoder = GPT2LMHeadModel.from_pretrained(pretrained_model)
        self.embed_size = self.encoder.transformer.config.hidden_size
        self.classifier_head = ClassificationHead(
            class_size=class_size,
            embed_size=self.embed_size
        )
        self.cached_mode = cached_mode

    def get_classifier(self):
        return self.classifier_head

    def train_custom(self):
        for param in self.encoder.parameters():
            param.requires_grad = False
        self.classifier_head.train()

    def avg_representation(self, x):
        mask = x.ne(0).unsqueeze(2).repeat(
            1, 1, self.embed_size
        ).float().to(device).detach()
        hidden, _ = self.encoder.transformer(x)
        masked_hidden = hidden * mask
        avg_hidden = torch.sum(masked_hidden, dim=1) / (
                torch.sum(mask, dim=1).detach() + EPSILON
        )
        return avg_hidden

    def forward(self, x):
        if self.cached_mode:
            avg_hidden = x.to(device)
        else:
93
            avg_hidden = self.avg_representation(x.to(device))
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112

        logits = self.classifier_head(avg_hidden)
        probs = F.log_softmax(logits, dim=-1)

        return probs


class Dataset(data.Dataset):
    def __init__(self, X, y):
        """Reads source and target sequences from txt files."""
        self.X = X
        self.y = y

    def __len__(self):
        return len(self.X)

    def __getitem__(self, index):
        """Returns one data pair (source and target)."""
        data = {}
piero's avatar
piero committed
113
114
        data["X"] = self.X[index]
        data["y"] = self.y[index]
115
116
117
118
119
120
121
122
123
124
        return data


def collate_fn(data):
    def pad_sequences(sequences):
        lengths = [len(seq) for seq in sequences]

        padded_sequences = torch.zeros(
            len(sequences),
            max(lengths)
piero's avatar
piero committed
125
        ).long()  # padding value = 0
126
127
128
129
130
131
132
133
134
135
136

        for i, seq in enumerate(sequences):
            end = lengths[i]
            padded_sequences[i, :end] = seq[:end]

        return padded_sequences, lengths

    item_info = {}
    for key in data[0].keys():
        item_info[key] = [d[key] for d in data]

piero's avatar
piero committed
137
138
    x_batch, _ = pad_sequences(item_info["X"])
    y_batch = torch.tensor(item_info["y"], dtype=torch.long)
139
140
141
142
143
144
145
146
147

    return x_batch, y_batch


def cached_collate_fn(data):
    item_info = {}
    for key in data[0].keys():
        item_info[key] = [d[key] for d in data]

piero's avatar
piero committed
148
149
    x_batch = torch.cat(item_info["X"], 0)
    y_batch = torch.tensor(item_info["y"], dtype=torch.long)
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171

    return x_batch, y_batch


def train_epoch(data_loader, discriminator, optimizer,
                epoch=0, log_interval=10):
    samples_so_far = 0
    discriminator.train_custom()
    for batch_idx, (input_t, target_t) in enumerate(data_loader):
        input_t, target_t = input_t.to(device), target_t.to(device)

        optimizer.zero_grad()

        output_t = discriminator(input_t)
        loss = F.nll_loss(output_t, target_t)
        loss.backward(retain_graph=True)
        optimizer.step()

        samples_so_far += len(input_t)

        if batch_idx % log_interval == 0:
            print(
piero's avatar
piero committed
172
                "Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}".format(
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
                    epoch + 1,
                    samples_so_far, len(data_loader.dataset),
                    100 * samples_so_far / len(data_loader.dataset), loss.item()
                )
            )


def evaluate_performance(data_loader, discriminator):
    discriminator.eval()
    test_loss = 0
    correct = 0
    with torch.no_grad():
        for input_t, target_t in data_loader:
            input_t, target_t = input_t.to(device), target_t.to(device)
            output_t = discriminator(input_t)
            # sum up batch loss
piero's avatar
piero committed
189
            test_loss += F.nll_loss(output_t, target_t, reduction="sum").item()
190
191
192
193
194
195
196
            # get the index of the max log-probability
            pred_t = output_t.argmax(dim=1, keepdim=True)
            correct += pred_t.eq(target_t.view_as(pred_t)).sum().item()

    test_loss /= len(data_loader.dataset)

    print(
piero's avatar
piero committed
197
198
        "Performance on test set: "
        "Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)".format(
199
200
201
202
203
204
205
206
            test_loss, correct, len(data_loader.dataset),
            100. * correct / len(data_loader.dataset)
        )
    )


def predict(input_sentence, model, classes, cached=False):
    input_t = model.tokenizer.encode(input_sentence)
207
    input_t = torch.tensor([input_t], dtype=torch.long, device=device)
208
209
210
211
    if cached:
        input_t = model.avg_representation(input_t)

    log_probs = model(input_t).data.cpu().numpy().flatten().tolist()
piero's avatar
piero committed
212
213
    print("Input sentence:", input_sentence)
    print("Predictions:", ", ".join(
214
215
216
217
218
219
220
221
222
223
224
225
        "{}: {:.4f}".format(c, math.exp(log_prob)) for c, log_prob in
        zip(classes, log_probs)
    ))


def get_cached_data_loader(dataset, batch_size, discriminator, shuffle=False):
    data_loader = torch.utils.data.DataLoader(dataset=dataset,
                                              batch_size=batch_size,
                                              collate_fn=collate_fn)

    xs = []
    ys = []
piero's avatar
piero committed
226
    for batch_idx, (x, y) in enumerate(tqdm(data_loader, ascii=True)):
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
        with torch.no_grad():
            x = x.to(device)
            avg_rep = discriminator.avg_representation(x).cpu().detach()
            avg_rep_list = torch.unbind(avg_rep.unsqueeze(1))
            xs += avg_rep_list
            ys += y.cpu().numpy().tolist()

    data_loader = torch.utils.data.DataLoader(
        dataset=Dataset(xs, ys),
        batch_size=batch_size,
        shuffle=shuffle,
        collate_fn=cached_collate_fn)

    return data_loader


def train_discriminator(
piero's avatar
piero committed
244
        dataset, dataset_fp=None, pretrained_model="gpt2-medium",
245
        epochs=10, batch_size=64, log_interval=10,
piero's avatar
piero committed
246
247
248
        save_model=False, cached=False, no_cuda=False):
    global device
    device = "cuda" if torch.cuda.is_available() and not no_cuda else "cpu"
249

piero's avatar
piero committed
250
    print("Preprocessing {} dataset...".format(dataset))
251
252
    start = time.time()

piero's avatar
piero committed
253
    if dataset == "SST":
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
        idx2class = ["positive", "negative", "very positive", "very negative",
                     "neutral"]
        class2idx = {c: i for i, c in enumerate(idx2class)}

        discriminator = Discriminator(
            class_size=len(idx2class),
            pretrained_model=pretrained_model,
            cached_mode=cached
        ).to(device)

        text = torchtext_data.Field()
        label = torchtext_data.Field(sequential=False)
        train_data, val_data, test_data = datasets.SST.splits(
            text,
            label,
            fine_grained=True,
            train_subtrees=True,
        )

        x = []
        y = []
piero's avatar
piero committed
275
        for i in trange(len(train_data), ascii=True):
276
277
278
279
280
281
282
283
284
285
286
            seq = TreebankWordDetokenizer().detokenize(
                vars(train_data[i])["text"]
            )
            seq = discriminator.tokenizer.encode(seq)
            seq = torch.tensor([50256] + seq, device=device, dtype=torch.long)
            x.append(seq)
            y.append(class2idx[vars(train_data[i])["label"]])
        train_dataset = Dataset(x, y)

        test_x = []
        test_y = []
piero's avatar
piero committed
287
        for i in trange(len(test_data), ascii=True):
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
            seq = TreebankWordDetokenizer().detokenize(
                vars(test_data[i])["text"]
            )
            seq = discriminator.tokenizer.encode(seq)
            seq = torch.tensor([50256] + seq, device=device, dtype=torch.long)
            test_x.append(seq)
            test_y.append(class2idx[vars(test_data[i])["label"]])
        test_dataset = Dataset(test_x, test_y)

        discriminator_meta = {
            "class_size": len(idx2class),
            "embed_size": discriminator.embed_size,
            "pretrained_model": pretrained_model,
            "class_vocab": class2idx,
            "default_class": 2,
        }

piero's avatar
piero committed
305
    elif dataset == "clickbait":
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
        idx2class = ["non_clickbait", "clickbait"]
        class2idx = {c: i for i, c in enumerate(idx2class)}

        discriminator = Discriminator(
            class_size=len(idx2class),
            pretrained_model=pretrained_model,
            cached_mode=cached
        ).to(device)

        with open("datasets/clickbait/clickbait_train_prefix.txt") as f:
            data = []
            for i, line in enumerate(f):
                try:
                    data.append(eval(line))
                except:
piero's avatar
piero committed
321
                    print("Error evaluating line {}: {}".format(
322
323
324
325
326
                        i, line
                    ))
                    continue
        x = []
        y = []
piero's avatar
piero committed
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
        with open("datasets/clickbait/clickbait_train_prefix.txt") as f:
            for i, line in enumerate(tqdm(f, ascii=True)):
                try:
                    d = eval(line)
                    seq = discriminator.tokenizer.encode(d["text"])

                    if len(seq) < max_length_seq:
                        seq = torch.tensor(
                            [50256] + seq, device=device, dtype=torch.long
                        )
                    else:
                        print("Line {} is longer than maximum length {}".format(
                            i, max_length_seq
                        ))
                        continue
                    x.append(seq)
                    y.append(d["label"])
                except:
                    print("Error evaluating / tokenizing"
                          " line {}, skipping it".format(i))
                    pass
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363

        full_dataset = Dataset(x, y)
        train_size = int(0.9 * len(full_dataset))
        test_size = len(full_dataset) - train_size
        train_dataset, test_dataset = torch.utils.data.random_split(
            full_dataset, [train_size, test_size]
        )

        discriminator_meta = {
            "class_size": len(idx2class),
            "embed_size": discriminator.embed_size,
            "pretrained_model": pretrained_model,
            "class_vocab": class2idx,
            "default_class": 1,
        }

piero's avatar
piero committed
364
    elif dataset == "toxic":
365
366
367
368
369
370
371
372
373
        idx2class = ["non_toxic", "toxic"]
        class2idx = {c: i for i, c in enumerate(idx2class)}

        discriminator = Discriminator(
            class_size=len(idx2class),
            pretrained_model=pretrained_model,
            cached_mode=cached
        ).to(device)

piero's avatar
piero committed
374
375
        x = []
        y = []
376
        with open("datasets/toxic/toxic_train.txt") as f:
piero's avatar
piero committed
377
            for i, line in enumerate(tqdm(f, ascii=True)):
378
                try:
piero's avatar
piero committed
379
380
381
382
383
384
385
386
387
388
389
390
391
392
                    d = eval(line)
                    seq = discriminator.tokenizer.encode(d["text"])

                    if len(seq) < max_length_seq:
                        seq = torch.tensor(
                            [50256] + seq, device=device, dtype=torch.long
                        )
                    else:
                        print("Line {} is longer than maximum length {}".format(
                            i, max_length_seq
                        ))
                        continue
                    x.append(seq)
                    y.append(int(np.sum(d["label"]) > 0))
393
                except:
piero's avatar
piero committed
394
395
396
                    print("Error evaluating / tokenizing"
                          " line {}, skipping it".format(i))
                    pass
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412

        full_dataset = Dataset(x, y)
        train_size = int(0.9 * len(full_dataset))
        test_size = len(full_dataset) - train_size
        train_dataset, test_dataset = torch.utils.data.random_split(
            full_dataset, [train_size, test_size]
        )

        discriminator_meta = {
            "class_size": len(idx2class),
            "embed_size": discriminator.embed_size,
            "pretrained_model": pretrained_model,
            "class_vocab": class2idx,
            "default_class": 0,
        }

piero's avatar
piero committed
413
    else:  # if dataset == "generic":
414
415
416
417
        # This assumes the input dataset is a TSV with the following structure:
        # class \t text

        if dataset_fp is None:
piero's avatar
piero committed
418
419
            raise ValueError("When generic dataset is selected, "
                             "dataset_fp needs to be specified aswell.")
420
421
422

        classes = set()
        with open(dataset_fp) as f:
piero's avatar
piero committed
423
424
            csv_reader = csv.reader(f, delimiter="\t")
            for row in tqdm(csv_reader, ascii=True):
425
426
                if row:
                    classes.add(row[0])
427
428
429
430
431
432
433
434
435
436
437
438
439

        idx2class = sorted(classes)
        class2idx = {c: i for i, c in enumerate(idx2class)}

        discriminator = Discriminator(
            class_size=len(idx2class),
            pretrained_model=pretrained_model,
            cached_mode=cached
        ).to(device)

        x = []
        y = []
        with open(dataset_fp) as f:
piero's avatar
piero committed
440
441
            csv_reader = csv.reader(f, delimiter="\t")
            for i, row in enumerate(tqdm(csv_reader, ascii=True)):
442
443
444
445
446
447
448
449
450
451
452
453
454
455
                if row:
                    label = row[0]
                    text = row[1]

                    try:
                        seq = discriminator.tokenizer.encode(text)
                        if (len(seq) < max_length_seq):
                            seq = torch.tensor(
                                [50256] + seq,
                                device=device,
                                dtype=torch.long
                            )

                        else:
piero's avatar
piero committed
456
457
458
459
                            print(
                                "Line {} is longer than maximum length {}".format(
                                    i, max_length_seq
                                ))
460
461
462
463
464
465
466
467
                            continue

                        x.append(seq)
                        y.append(class2idx[label])

                    except:
                        print("Error tokenizing line {}, skipping it".format(i))
                        pass
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

        full_dataset = Dataset(x, y)
        train_size = int(0.9 * len(full_dataset))
        test_size = len(full_dataset) - train_size
        train_dataset, test_dataset = torch.utils.data.random_split(
            full_dataset,
            [train_size, test_size]
        )

        discriminator_meta = {
            "class_size": len(idx2class),
            "embed_size": discriminator.embed_size,
            "pretrained_model": pretrained_model,
            "class_vocab": class2idx,
            "default_class": 0,
        }

    end = time.time()
piero's avatar
piero committed
486
    print("Preprocessed {} data points".format(
487
488
489
490
491
        len(train_dataset) + len(test_dataset))
    )
    print("Data preprocessing took: {:.3f}s".format(end - start))

    if cached:
piero's avatar
piero committed
492
493
        print("Building representation cache...")

494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
        start = time.time()

        train_loader = get_cached_data_loader(
            train_dataset, batch_size, discriminator, shuffle=True
        )

        test_loader = get_cached_data_loader(
            test_dataset, batch_size, discriminator
        )

        end = time.time()
        print("Building representation cache took: {:.3f}s".format(end - start))

    else:
        train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
                                                   batch_size=batch_size,
                                                   shuffle=True,
                                                   collate_fn=collate_fn)
        test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
                                                  batch_size=batch_size,
                                                  collate_fn=collate_fn)

    if save_model:
        with open("{}_classifier_head_meta.json".format(dataset),
                  "w") as meta_file:
            json.dump(discriminator_meta, meta_file)

    optimizer = optim.Adam(discriminator.parameters(), lr=0.0001)

    for epoch in range(epochs):
        start = time.time()
piero's avatar
piero committed
525
        print("\nEpoch", epoch + 1)
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547

        train_epoch(
            discriminator=discriminator,
            data_loader=train_loader,
            optimizer=optimizer,
            epoch=epoch,
            log_interval=log_interval
        )
        evaluate_performance(
            data_loader=test_loader,
            discriminator=discriminator
        )

        end = time.time()
        print("Epoch took: {:.3f}s".format(end - start))

        print("\nExample prediction")
        predict(example_sentence, discriminator, idx2class, cached)

        if save_model:
            # torch.save(discriminator.state_dict(),
            #           "{}_discriminator_{}.pt".format(
548
            #               args.dataset, epoch + 1
549
550
            #               ))
            torch.save(discriminator.get_classifier().state_dict(),
551
552
                       "{}_classifier_head_epoch_{}.pt".format(dataset,
                                                               epoch + 1))
553
554


piero's avatar
piero committed
555
if __name__ == "__main__":
556
    parser = argparse.ArgumentParser(
piero's avatar
piero committed
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
        description="Train a discriminator on top of GPT-2 representations")
    parser.add_argument("--dataset", type=str, default="SST",
                        choices=("SST", "clickbait", "toxic", "generic"),
                        help="dataset to train the discriminator on."
                             "In case of generic, the dataset is expected"
                             "to be a TSBV file with structure: class \\t text")
    parser.add_argument("--dataset_fp", type=str, default="",
                        help="File path of the dataset to use. "
                             "Needed only in case of generic datadset")
    parser.add_argument("--pretrained_model", type=str, default="gpt2-medium",
                        help="Pretrained model to use as encoder")
    parser.add_argument("--epochs", type=int, default=10, metavar="N",
                        help="Number of training epochs")
    parser.add_argument("--batch_size", type=int, default=64, metavar="N",
                        help="input batch size for training (default: 64)")
    parser.add_argument("--log_interval", type=int, default=10, metavar="N",
                        help="how many batches to wait before logging training status")
    parser.add_argument("--save_model", action="store_true",
                        help="whether to save the model")
    parser.add_argument("--cached", action="store_true",
                        help="whether to cache the input representations")
    parser.add_argument("--no_cuda", action="store_true",
                        help="use to turn off cuda")
580
581
582
    args = parser.parse_args()

    train_discriminator(**(vars(args)))