run_ner.py 16 KB
Newer Older
1
# coding=utf-8
2
# Copyright 2020 The HuggingFace Team All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
15
16
17
"""
Fine-tuning the library models for token classification.
"""
Sylvain Gugger's avatar
Sylvain Gugger committed
18
19
# You can also adapt this script on your own token classification task and datasets. Pointers for this are left as
# comments.
20

21
22
import logging
import os
23
import sys
Julien Chaumond's avatar
Julien Chaumond committed
24
from dataclasses import dataclass, field
25
from typing import Optional
26
27

import numpy as np
Sylvain Gugger's avatar
Sylvain Gugger committed
28
from datasets import ClassLabel, load_dataset
29
from seqeval.metrics import accuracy_score, f1_score, precision_score, recall_score
Aymeric Augustin's avatar
Aymeric Augustin committed
30

31
import transformers
Aymeric Augustin's avatar
Aymeric Augustin committed
32
from transformers import (
33
34
35
    AutoConfig,
    AutoModelForTokenClassification,
    AutoTokenizer,
36
    DataCollatorForTokenClassification,
Julien Chaumond's avatar
Julien Chaumond committed
37
    HfArgumentParser,
38
    PreTrainedTokenizerFast,
Julien Chaumond's avatar
Julien Chaumond committed
39
40
41
    Trainer,
    TrainingArguments,
    set_seed,
Aymeric Augustin's avatar
Aymeric Augustin committed
42
)
43
from transformers.trainer_utils import is_main_process
Aymeric Augustin's avatar
Aymeric Augustin committed
44
45


46
47
48
logger = logging.getLogger(__name__)


Julien Chaumond's avatar
Julien Chaumond committed
49
50
51
52
53
@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """
54

Julien Chaumond's avatar
Julien Chaumond committed
55
56
    model_name_or_path: str = field(
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
57
    )
Julien Chaumond's avatar
Julien Chaumond committed
58
59
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
60
    )
Julien Chaumond's avatar
Julien Chaumond committed
61
62
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
63
    )
Julien Chaumond's avatar
Julien Chaumond committed
64
    cache_dir: Optional[str] = field(
65
66
        default=None,
        metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
67
    )
68
69


Julien Chaumond's avatar
Julien Chaumond committed
70
71
72
73
74
@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """
75

76
77
78
79
80
81
    task_name: Optional[str] = field(default="ner", metadata={"help": "The name of the task (ner, pos...)."})
    dataset_name: Optional[str] = field(
        default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
82
    )
83
84
85
86
    train_file: Optional[str] = field(
        default=None, metadata={"help": "The input training data file (a csv or JSON file)."}
    )
    validation_file: Optional[str] = field(
87
        default=None,
88
        metadata={"help": "An optional input evaluation data file to evaluate on (a csv or JSON file)."},
89
    )
90
91
92
    test_file: Optional[str] = field(
        default=None,
        metadata={"help": "An optional input test data file to predict on (a csv or JSON file)."},
93
    )
Julien Chaumond's avatar
Julien Chaumond committed
94
95
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
96
    )
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )
    pad_to_max_length: bool = field(
        default=False,
        metadata={
            "help": "Whether to pad all samples to model maximum sentence length. "
            "If False, will pad the samples dynamically when batching to the maximum length in the batch. More "
            "efficient on GPU but very bad for TPU."
        },
    )
    label_all_tokens: bool = field(
        default=False,
        metadata={
            "help": "Whether to put the label for one word on all tokens of generated by that word or just on the "
            "one (in which case the other tokens will have a padding index)."
        },
    )

    def __post_init__(self):
        if self.dataset_name is None and self.train_file is None and self.validation_file is None:
            raise ValueError("Need either a dataset name or a training/validation file.")
        else:
            if self.train_file is not None:
                extension = self.train_file.split(".")[-1]
                assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
            if self.validation_file is not None:
                extension = self.validation_file.split(".")[-1]
                assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
        self.task_name = self.task_name.lower()
128

Julien Chaumond's avatar
Julien Chaumond committed
129
130
131
132
133
134
135

def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
136
137
138
139
140
141
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()
142

143
    if (
Julien Chaumond's avatar
Julien Chaumond committed
144
145
146
147
        os.path.exists(training_args.output_dir)
        and os.listdir(training_args.output_dir)
        and training_args.do_train
        and not training_args.overwrite_output_dir
148
    ):
149
        raise ValueError(
150
151
            f"Output directory ({training_args.output_dir}) already exists and is not empty."
            "Use --overwrite_output_dir to overcome."
152
153
        )

154
    # Setup logging
155
156
157
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
158
        level=logging.INFO if is_main_process(training_args.local_rank) else logging.WARN,
159
    )
160
161

    # Log on each process the small summary:
162
    logger.warning(
163
164
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
165
    )
166
167
168
    # Set the verbosity to info of the Transformers logger (on main process only):
    if is_main_process(training_args.local_rank):
        transformers.utils.logging.set_verbosity_info()
169
170
        transformers.utils.logging.enable_default_handler()
        transformers.utils.logging.enable_explicit_format()
Julien Chaumond's avatar
Julien Chaumond committed
171
    logger.info("Training/evaluation parameters %s", training_args)
172

173
    # Set seed before initializing model.
Julien Chaumond's avatar
Julien Chaumond committed
174
    set_seed(training_args.seed)
175

176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
    # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
    # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
    # 'text' is found. You can easily tweak this behavior (see below).
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
        datasets = load_dataset(data_args.dataset_name, data_args.dataset_config_name)
    else:
        data_files = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
        if data_args.validation_file is not None:
            data_files["validation"] = data_args.validation_file
        if data_args.test_file is not None:
            data_files["test"] = data_args.test_file
        extension = data_args.train_file.split(".")[-1]
        datasets = load_dataset(extension, data_files=data_files)
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    if training_args.do_train:
        column_names = datasets["train"].column_names
Sylvain Gugger's avatar
Sylvain Gugger committed
203
        features = datasets["train"].features
204
205
    else:
        column_names = datasets["validation"].column_names
Sylvain Gugger's avatar
Sylvain Gugger committed
206
207
208
209
210
        features = datasets["validation"].features
    text_column_name = "tokens" if "tokens" in column_names else column_names[0]
    label_column_name = (
        f"{data_args.task_name}_tags" if f"{data_args.task_name}_tags" in column_names else column_names[1]
    )
211

Sylvain Gugger's avatar
Sylvain Gugger committed
212
213
    # In the event the labels are not a `Sequence[ClassLabel]`, we will need to go through the dataset to get the
    # unique labels.
214
215
216
217
218
219
220
221
    def get_label_list(labels):
        unique_labels = set()
        for label in labels:
            unique_labels = unique_labels | set(label)
        label_list = list(unique_labels)
        label_list.sort()
        return label_list

Sylvain Gugger's avatar
Sylvain Gugger committed
222
223
224
225
226
227
228
    if isinstance(features[label_column_name].feature, ClassLabel):
        label_list = features[label_column_name].feature.names
        # No need to convert the labels since they are already ints.
        label_to_id = {i: i for i in range(len(label_list))}
    else:
        label_list = get_label_list(datasets["train"][label_column_name])
        label_to_id = {l: i for i, l in enumerate(label_list)}
229
    num_labels = len(label_list)
230
231

    # Load pretrained model and tokenizer
Julien Chaumond's avatar
Julien Chaumond committed
232
233
234
235
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
236
    config = AutoConfig.from_pretrained(
Julien Chaumond's avatar
Julien Chaumond committed
237
        model_args.config_name if model_args.config_name else model_args.model_name_or_path,
238
        num_labels=num_labels,
239
        finetuning_task=data_args.task_name,
Julien Chaumond's avatar
Julien Chaumond committed
240
        cache_dir=model_args.cache_dir,
241
    )
242
    tokenizer = AutoTokenizer.from_pretrained(
Julien Chaumond's avatar
Julien Chaumond committed
243
244
        model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
245
        use_fast=True,
246
    )
247
    model = AutoModelForTokenClassification.from_pretrained(
Julien Chaumond's avatar
Julien Chaumond committed
248
249
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
250
        config=config,
Julien Chaumond's avatar
Julien Chaumond committed
251
        cache_dir=model_args.cache_dir,
252
    )
253

254
255
256
257
258
259
260
261
    # Tokenizer check: this script requires a fast tokenizer.
    if not isinstance(tokenizer, PreTrainedTokenizerFast):
        raise ValueError(
            "This example script only works for models that have a fast tokenizer. Checkout the big table of models "
            "at https://huggingface.co/transformers/index.html#bigtable to find the model types that meet this "
            "requirement"
        )

262
263
264
265
266
267
268
269
270
271
272
273
    # Preprocessing the dataset
    # Padding strategy
    padding = "max_length" if data_args.pad_to_max_length else False

    # Tokenize all texts and align the labels with them.
    def tokenize_and_align_labels(examples):
        tokenized_inputs = tokenizer(
            examples[text_column_name],
            padding=padding,
            truncation=True,
            # We use this argument because the texts in our dataset are lists of words (with a label for each word).
            is_split_into_words=True,
Julien Chaumond's avatar
Julien Chaumond committed
274
        )
275
        labels = []
276
277
278
        for i, label in enumerate(examples[label_column_name]):
            word_ids = tokenized_inputs.word_ids(batch_index=i)
            previous_word_idx = None
279
            label_ids = []
280
281
282
283
            for word_idx in word_ids:
                # Special tokens have a word id that is None. We set the label to -100 so they are automatically
                # ignored in the loss function.
                if word_idx is None:
284
                    label_ids.append(-100)
285
286
287
                # We set the label for the first token of each word.
                elif word_idx != previous_word_idx:
                    label_ids.append(label_to_id[label[word_idx]])
288
289
290
                # For the other tokens in a word, we set the label to either the current label or -100, depending on
                # the label_all_tokens flag.
                else:
291
292
                    label_ids.append(label_to_id[label[word_idx]] if data_args.label_all_tokens else -100)
                previous_word_idx = word_idx
293
294
295
296
297
298
299
300
301
302

            labels.append(label_ids)
        tokenized_inputs["labels"] = labels
        return tokenized_inputs

    tokenized_datasets = datasets.map(
        tokenize_and_align_labels,
        batched=True,
        num_proc=data_args.preprocessing_num_workers,
        load_from_cache_file=not data_args.overwrite_cache,
Julien Chaumond's avatar
Julien Chaumond committed
303
304
    )

305
306
    # Data collator
    data_collator = DataCollatorForTokenClassification(tokenizer)
Julien Chaumond's avatar
Julien Chaumond committed
307

308
309
310
311
    # Metrics
    def compute_metrics(p):
        predictions, labels = p
        predictions = np.argmax(predictions, axis=2)
Julien Chaumond's avatar
Julien Chaumond committed
312

313
314
315
316
317
318
319
320
321
        # Remove ignored index (special tokens)
        true_predictions = [
            [label_list[p] for (p, l) in zip(prediction, label) if l != -100]
            for prediction, label in zip(predictions, labels)
        ]
        true_labels = [
            [label_list[l] for (p, l) in zip(prediction, label) if l != -100]
            for prediction, label in zip(predictions, labels)
        ]
Julien Chaumond's avatar
Julien Chaumond committed
322
323

        return {
324
325
326
327
            "accuracy_score": accuracy_score(true_labels, true_predictions),
            "precision": precision_score(true_labels, true_predictions),
            "recall": recall_score(true_labels, true_predictions),
            "f1": f1_score(true_labels, true_predictions),
Julien Chaumond's avatar
Julien Chaumond committed
328
329
330
331
332
333
        }

    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
334
335
336
337
        train_dataset=tokenized_datasets["train"] if training_args.do_train else None,
        eval_dataset=tokenized_datasets["validation"] if training_args.do_eval else None,
        tokenizer=tokenizer,
        data_collator=data_collator,
Julien Chaumond's avatar
Julien Chaumond committed
338
339
        compute_metrics=compute_metrics,
    )
340
341

    # Training
Julien Chaumond's avatar
Julien Chaumond committed
342
343
344
345
    if training_args.do_train:
        trainer.train(
            model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path) else None
        )
346
        trainer.save_model()  # Saves the tokenizer too for easy upload
347
348
349

    # Evaluation
    results = {}
350
    if training_args.do_eval:
Julien Chaumond's avatar
Julien Chaumond committed
351
352
        logger.info("*** Evaluate ***")

353
        results = trainer.evaluate()
Julien Chaumond's avatar
Julien Chaumond committed
354

355
356
        output_eval_file = os.path.join(training_args.output_dir, "eval_results_ner.txt")
        if trainer.is_world_process_zero():
357
358
            with open(output_eval_file, "w") as writer:
                logger.info("***** Eval results *****")
359
360
361
                for key, value in results.items():
                    logger.info(f"  {key} = {value}")
                    writer.write(f"{key} = {value}\n")
Julien Chaumond's avatar
Julien Chaumond committed
362
363

    # Predict
364
    if training_args.do_predict:
365
366
        logger.info("*** Predict ***")

367
        test_dataset = tokenized_datasets["test"]
368
369
        predictions, labels, metrics = trainer.predict(test_dataset)
        predictions = np.argmax(predictions, axis=2)
Julien Chaumond's avatar
Julien Chaumond committed
370

371
372
373
374
375
        # Remove ignored index (special tokens)
        true_predictions = [
            [label_list[p] for (p, l) in zip(prediction, label) if l != -100]
            for prediction, label in zip(predictions, labels)
        ]
Julien Chaumond's avatar
Julien Chaumond committed
376
377

        output_test_results_file = os.path.join(training_args.output_dir, "test_results.txt")
378
        if trainer.is_world_process_zero():
379
380
            with open(output_test_results_file, "w") as writer:
                for key, value in metrics.items():
381
382
                    logger.info(f"  {key} = {value}")
                    writer.write(f"{key} = {value}\n")
Julien Chaumond's avatar
Julien Chaumond committed
383

384
        # Save predictions
Julien Chaumond's avatar
Julien Chaumond committed
385
        output_test_predictions_file = os.path.join(training_args.output_dir, "test_predictions.txt")
386
        if trainer.is_world_process_zero():
387
            with open(output_test_predictions_file, "w") as writer:
388
389
                for prediction in true_predictions:
                    writer.write(" ".join(prediction) + "\n")
390

391
392
393
    return results


394
395
396
397
398
def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


399
400
if __name__ == "__main__":
    main()