test_modeling_gemma2.py 8.18 KB
Newer Older
Arthur's avatar
Arthur committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch Gemma2 model."""

import unittest

19
20
from pytest import mark

21
from transformers import AutoModelForCausalLM, AutoTokenizer, Gemma2Config, is_torch_available, pipeline
Arthur's avatar
Arthur committed
22
from transformers.testing_utils import (
23
    require_flash_attn,
Arthur's avatar
Arthur committed
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
    require_read_token,
    require_torch,
    require_torch_gpu,
    slow,
    torch_device,
)

from ...models.gemma.test_modeling_gemma import GemmaModelTest, GemmaModelTester
from ...test_configuration_common import ConfigTester


if is_torch_available():
    import torch

    from transformers import (
        Gemma2ForCausalLM,
        Gemma2ForSequenceClassification,
        Gemma2ForTokenClassification,
        Gemma2Model,
    )


class Gemma2ModelTester(GemmaModelTester):
Arthur's avatar
Arthur committed
47
48
49
50
51
52
    if is_torch_available():
        config_class = Gemma2Config
        model_class = Gemma2Model
        for_causal_lm_class = Gemma2ForCausalLM
        for_sequence_class = Gemma2ForSequenceClassification
        for_token_class = Gemma2ForTokenClassification
Arthur's avatar
Arthur committed
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107


@require_torch
class Gemma2ModelTest(GemmaModelTest, unittest.TestCase):
    all_model_classes = (
        (Gemma2Model, Gemma2ForCausalLM, Gemma2ForSequenceClassification, Gemma2ForTokenClassification)
        if is_torch_available()
        else ()
    )
    all_generative_model_classes = ()
    pipeline_model_mapping = (
        {
            "feature-extraction": Gemma2Model,
            "text-classification": Gemma2ForSequenceClassification,
            "token-classification": Gemma2ForTokenClassification,
            "text-generation": Gemma2ForCausalLM,
            "zero-shot": Gemma2ForSequenceClassification,
        }
        if is_torch_available()
        else {}
    )
    test_headmasking = False
    test_pruning = False
    _is_stateful = True
    model_split_percents = [0.5, 0.6]
    _torch_compile_test_ckpt = "google/gemma-2-9b"

    def setUp(self):
        self.model_tester = Gemma2ModelTester(self)
        self.config_tester = ConfigTester(self, config_class=Gemma2Config, hidden_size=37)

    @unittest.skip("Eager and SDPA do not produce the same outputs, thus this test fails")
    def test_model_outputs_equivalence(self, **kwargs):
        pass

    @unittest.skip("Gemma2's outputs are expected to be different")
    def test_eager_matches_sdpa_inference(self):
        pass


@slow
@require_torch_gpu
class Gemma2IntegrationTest(unittest.TestCase):
    input_text = ["Hello I am doing", "Hi today"]
    # This variable is used to determine which CUDA device are we using for our runners (A10 or T4)
    # Depending on the hardware we get different logits / generations
    cuda_compute_capability_major_version = None

    @classmethod
    def setUpClass(cls):
        if is_torch_available() and torch.cuda.is_available():
            # 8 is for A100 / A10 and 7 for T4
            cls.cuda_compute_capability_major_version = torch.cuda.get_device_capability()[0]

    @require_read_token
108
    def test_model_9b_bf16(self):
Arthur's avatar
Arthur committed
109
110
        model_id = "google/gemma-2-9b"
        EXPECTED_TEXTS = [
111
112
            "<bos>Hello I am doing a project on the 1918 flu pandemic and I am trying to find out how many",
            "<pad><pad><bos>Hi today I'm going to be talking about the history of the United States. The United States of America",
Arthur's avatar
Arthur committed
113
114
        ]

115
116
117
        model = AutoModelForCausalLM.from_pretrained(
            model_id, low_cpu_mem_usage=True, torch_dtype=torch.bfloat16, attn_implementation="eager"
        ).to(torch_device)
Arthur's avatar
Arthur committed
118
119
120
121
122

        tokenizer = AutoTokenizer.from_pretrained(model_id)
        inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)

        output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
123
        output_text = tokenizer.batch_decode(output, skip_special_tokens=False)
Arthur's avatar
Arthur committed
124
125
126
127

        self.assertEqual(output_text, EXPECTED_TEXTS)

    @require_read_token
128
    def test_model_9b_fp16(self):
Arthur's avatar
Arthur committed
129
130
        model_id = "google/gemma-2-9b"
        EXPECTED_TEXTS = [
131
132
            "<bos>Hello I am doing a project on the 1918 flu pandemic and I am trying to find out how many",
            "<pad><pad><bos>Hi today I'm going to be talking about the history of the United States. The United States of America",
Arthur's avatar
Arthur committed
133
134
        ]

135
136
137
        model = AutoModelForCausalLM.from_pretrained(
            model_id, low_cpu_mem_usage=True, torch_dtype=torch.float16, attn_implementation="eager"
        ).to(torch_device)
Arthur's avatar
Arthur committed
138
139
140
141
142

        tokenizer = AutoTokenizer.from_pretrained(model_id)
        inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)

        output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
143
        output_text = tokenizer.batch_decode(output, skip_special_tokens=False)
Arthur's avatar
Arthur committed
144
145

        self.assertEqual(output_text, EXPECTED_TEXTS)
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166

    @require_read_token
    def test_model_9b_pipeline_bf16(self):
        # See https://github.com/huggingface/transformers/pull/31747 -- pipeline was broken for Gemma2 before this PR
        model_id = "google/gemma-2-9b"
        # EXPECTED_TEXTS should match the same non-pipeline test, minus the special tokens
        EXPECTED_TEXTS = [
            "Hello I am doing a project on the 1918 flu pandemic and I am trying to find out how many",
            "Hi today I'm going to be talking about the history of the United States. The United States of America",
        ]

        model = AutoModelForCausalLM.from_pretrained(model_id, low_cpu_mem_usage=True, torch_dtype=torch.bfloat16).to(
            torch_device
        )
        tokenizer = AutoTokenizer.from_pretrained(model_id)
        pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)

        output = pipe(self.input_text, max_new_tokens=20, do_sample=False, padding=True)

        self.assertEqual(output[0][0]["generated_text"], EXPECTED_TEXTS[0])
        self.assertEqual(output[1][0]["generated_text"], EXPECTED_TEXTS[1])
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191

    @require_read_token
    @require_flash_attn
    @require_torch_gpu
    @mark.flash_attn_test
    @slow
    def test_model_9b_flash_attn(self):
        # See https://github.com/huggingface/transformers/issues/31953 --- flash attn was generating garbage for gemma2, especially in long context
        model_id = "google/gemma-2-9b"
        EXPECTED_TEXTS = [
            '<bos>Hello I am doing a project on the 1918 flu pandemic and I am trying to find out how many people died in the United States. I have found a few sites that say 500,000 but I am not sure if that is correct. I have also found a site that says 675,000 but I am not sure if that is correct either. I am trying to find out how many people died in the United States. I have found a few',
            "<pad><pad><bos>Hi today I'm going to be talking about the history of the United States. The United States of America is a country in North America. It is the third largest country in the world by total area and the third most populous country with over 320 million people. The United States is a federal republic consisting of 50 states and a federal district. The 48 contiguous states and the district of Columbia are in central North America between Canada and Mexico. The state of Alaska is in the"
        ]  # fmt: skip

        model = AutoModelForCausalLM.from_pretrained(
            model_id, attn_implementation="flash_attention_2", torch_dtype="float16"
        ).to(torch_device)
        tokenizer = AutoTokenizer.from_pretrained(model_id)
        inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)

        output = model.generate(**inputs, max_new_tokens=100, do_sample=False)
        output_text = tokenizer.batch_decode(output, skip_special_tokens=False)
        print(output_text)

        self.assertEqual(output_text, EXPECTED_TEXTS)