pegasus.rst 5.57 KB
Newer Older
1
Pegasus
Sylvain Gugger's avatar
Sylvain Gugger committed
2
-----------------------------------------------------------------------------------------------------------------------
3
4
5

**DISCLAIMER:** If you see something strange, file a `Github Issue
<https://github.com/huggingface/transformers/issues/new?assignees=sshleifer&labels=&template=bug-report.md&title>`__
6
and assign @patrickvonplaten.
7
8
9


Overview
Sylvain Gugger's avatar
Sylvain Gugger committed
10
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11

Sylvain Gugger's avatar
Sylvain Gugger committed
12
13
The Pegasus model was proposed in `PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization
<https://arxiv.org/pdf/1912.08777.pdf>`__ by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu on Dec 18, 2019.
14

15
16
According to the abstract,

17
18
19
- Pegasus' pretraining task is intentionally similar to summarization: important sentences are removed/masked from an
  input document and are generated together as one output sequence from the remaining sentences, similar to an
  extractive summary.
20
21
- Pegasus achieves SOTA summarization performance on all 12 downstream tasks, as measured by ROUGE and human eval.

22
The Authors' code can be found `here <https://github.com/google-research/pegasus>`__.
23
24
25


Checkpoints
Sylvain Gugger's avatar
Sylvain Gugger committed
26
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
27

Sylvain Gugger's avatar
Sylvain Gugger committed
28
All the `checkpoints <https://huggingface.co/models?search=pegasus>`__ are fine-tuned for summarization, besides
29
30
`pegasus-large`, whence the other checkpoints are fine-tuned:

31
32
33
- Each checkpoint is 2.2 GB on disk and 568M parameters.
- FP16 is not supported (help/ideas on this appreciated!).
- Summarizing xsum in fp32 takes about 400ms/sample, with default parameters on a v100 GPU.
34
35
36
37
- Full replication results and correctly pre-processed data can be found in this `Issue
  <https://github.com/huggingface/transformers/issues/6844#issue-689259666>`__.
- `Distilled checkpoints <https://huggingface.co/models?search=distill-pegasus>`__ are described in this `paper
  <https://arxiv.org/abs/2010.13002>`__.
38

39
40
41
42
43
44
45
46
Examples
_______________________________________________________________________________________________________________________

- `Script <https://github.com/huggingface/transformers/blob/master/examples/seq2seq/finetune_pegasus_xsum.sh>`__ to
  fine-tune pegasus on the XSUM dataset. Data download instructions at `examples/seq2seq/
  <https://github.com/huggingface/transformers/blob/master/examples/seq2seq/README.md>`__.
- FP16 is not supported (help/ideas on this appreciated!).
- The adafactor optimizer is recommended for pegasus fine-tuning.
47
48
49


Implementation Notes
Sylvain Gugger's avatar
Sylvain Gugger committed
50
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
51
52

- All models are transformer encoder-decoders with 16 layers in each component.
53
- The implementation is completely inherited from :class:`~transformers.BartForConditionalGeneration`
54
- Some key configuration differences:
Sylvain Gugger's avatar
Sylvain Gugger committed
55

56
    - static, sinusoidal position embeddings
57
    - no :obj:`layernorm_embedding` (:obj:`PegasusConfig.normalize_embedding=False`)
58
    - the model starts generating with pad_token_id (which has 0 token_embedding) as the prefix.
59
60
61
62
63
    - more beams are used (:obj:`num_beams=8`)
- All pretrained pegasus checkpoints are the same besides three attributes: :obj:`tokenizer.model_max_length` (maximum
  input size), :obj:`max_length` (the maximum number of tokens to generate) and :obj:`length_penalty`.
- The code to convert checkpoints trained in the author's `repo <https://github.com/google-research/pegasus>`_ can be
  found in ``convert_pegasus_tf_to_pytorch.py``.
64
65
66


Usage Example
Sylvain Gugger's avatar
Sylvain Gugger committed
67
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
68
69
70
71

.. code-block:: python

    from transformers import PegasusForConditionalGeneration, PegasusTokenizer
72
    import torch
73
74
75
76
77
78
79
80
81
82
83
    src_text = [
        """ PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow."""
    ]

    model_name = 'google/pegasus-xsum'
    torch_device = 'cuda' if torch.cuda.is_available() else 'cpu'
    tokenizer = PegasusTokenizer.from_pretrained(model_name)
    model = PegasusForConditionalGeneration.from_pretrained(model_name).to(torch_device)
    batch = tokenizer.prepare_seq2seq_batch(src_text, truncation=True, padding='longest').to(torch_device)
    translated = model.generate(**batch)
    tgt_text = tokenizer.batch_decode(translated, skip_special_tokens=True)
84
    assert tgt_text[0] == "California's largest electricity provider has turned off power to hundreds of thousands of customers."
85

86
87


88
PegasusConfig
Sylvain Gugger's avatar
Sylvain Gugger committed
89
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
90

91
.. autoclass:: transformers.PegasusConfig
92
93
94


PegasusTokenizer
Sylvain Gugger's avatar
Sylvain Gugger committed
95
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Sylvain Gugger's avatar
Sylvain Gugger committed
96

97
98
99
100
101
102
warning: ``add_tokens`` does not work at the moment.

.. autoclass:: transformers.PegasusTokenizer
    :members: __call__, prepare_seq2seq_batch


103
104
PegasusForConditionalGeneration
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
105

106
.. autoclass:: transformers.PegasusForConditionalGeneration
107
108
109
110
111
112


TFPegasusForConditionalGeneration
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. autoclass:: transformers.TFPegasusForConditionalGeneration