class_mapping_update.py 3.83 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# this script remaps classes to class strings so that it's quick to load such maps and not require
# loading all possible modeling files
#
# it can be extended to auto-generate other dicts that are needed at runtime


import os
import sys
from os.path import abspath, dirname, join


git_repo_path = abspath(join(dirname(dirname(__file__)), "src"))
sys.path.insert(1, git_repo_path)

src = "src/transformers/models/auto/modeling_auto.py"
dst = "src/transformers/utils/modeling_auto_mapping.py"

Sylvain Gugger's avatar
Sylvain Gugger committed
33

34
35
36
37
38
if os.path.exists(dst) and os.path.getmtime(src) < os.path.getmtime(dst):
    # speed things up by only running this script if the src is newer than dst
    sys.exit(0)

# only load if needed
Sylvain Gugger's avatar
Sylvain Gugger committed
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
from transformers.models.auto.modeling_auto import (  # noqa
    MODEL_FOR_CAUSAL_LM_MAPPING,
    MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
    MODEL_FOR_MASKED_LM_MAPPING,
    MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
    MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING,
    MODEL_FOR_OBJECT_DETECTION_MAPPING,
    MODEL_FOR_PRETRAINING_MAPPING,
    MODEL_FOR_QUESTION_ANSWERING_MAPPING,
    MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
    MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
    MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING,
    MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
    MODEL_MAPPING,
    MODEL_WITH_LM_HEAD_MAPPING,
)


# Those constants don't have a name attribute, so we need to define it manually
mappings = {
    "MODEL_FOR_QUESTION_ANSWERING_MAPPING": MODEL_FOR_QUESTION_ANSWERING_MAPPING,
    "MODEL_FOR_CAUSAL_LM_MAPPING": MODEL_FOR_CAUSAL_LM_MAPPING,
    "MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING": MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
    "MODEL_FOR_MASKED_LM_MAPPING": MODEL_FOR_MASKED_LM_MAPPING,
    "MODEL_FOR_MULTIPLE_CHOICE_MAPPING": MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
    "MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING": MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING,
    "MODEL_FOR_OBJECT_DETECTION_MAPPING": MODEL_FOR_OBJECT_DETECTION_MAPPING,
    "MODEL_FOR_OBJECT_DETECTION_MAPPING": MODEL_FOR_OBJECT_DETECTION_MAPPING,
    "MODEL_FOR_QUESTION_ANSWERING_MAPPING": MODEL_FOR_QUESTION_ANSWERING_MAPPING,
    "MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING": MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
    "MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING": MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
    "MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING": MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING,
    "MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING": MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
    "MODEL_MAPPING": MODEL_MAPPING,
    "MODEL_WITH_LM_HEAD_MAPPING": MODEL_WITH_LM_HEAD_MAPPING,
}


def get_name(value):
    if isinstance(value, tuple):
        return tuple(get_name(o) for o in value)
    return value.__name__
81
82
83
84
85
86
87
88
89


content = [
    "# THIS FILE HAS BEEN AUTOGENERATED. To update:",
    "# 1. modify: models/auto/modeling_auto.py",
    "# 2. run: python utils/class_mapping_update.py",
    "from collections import OrderedDict",
    "",
]
Sylvain Gugger's avatar
Sylvain Gugger committed
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

for name, mapping in mappings.items():
    entries = "\n".join([f'        ("{k.__name__}", "{get_name(v)}"),' for k, v in mapping.items()])

    content += [
        "",
        f"{name}_NAMES = OrderedDict(",
        "    [",
        entries,
        "    ]",
        ")",
        "",
    ]

print(f"Updating {dst}")
105
106
with open(dst, "w", encoding="utf-8", newline="\n") as f:
    f.write("\n".join(content))